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Abstract—Coverage-based fuzzing has been actively studied
and widely adopted for finding vulnerabilities in real-world
software applications. With coverage information, such as state-
ment coverage and transition coverage, as the guidance of
input mutation, coverage-based fuzzing can generate inputs that
cover more code and thus find more vulnerabilities without
prerequisite information such as input format. Current coverage-
based fuzzing tools treat covered code equally. All inputs that
contribute to new statements or transitions are kept for future
mutation no matter what the statements or transitions are
and how much they impact security. Although this design is
reasonable from the perspective of software testing that aims
at full code coverage, it is inefficient for vulnerability discovery
since that 1) current techniques are still inadequate to reach
full coverage within a reasonable amount of time, and that 2)
we always want to discover vulnerabilities early so that it can
be fixed promptly. Even worse, due to the non-discriminative
code coverage treatment, current fuzzing tools suffer from recent
anti-fuzzing techniques and become much less effective in finding
vulnerabilities from programs enabled with anti-fuzzing schemes.

To address the limitation caused by equal coverage, we
propose coverage accounting, a novel approach that evaluates
coverage by security impacts. Coverage accounting attributes
edges by three metrics based on three different levels: function,
loop and basic block. Based on the proposed metrics, we
design a new scheme to prioritize fuzzing inputs and develop
TortoiseFuzz, a greybox fuzzer for finding memory corruption
vulnerabilities. We evaluated TortoiseFuzz on 30 real-world
applications and compared it with 6 state-of-the-art greybox and
hybrid fuzzers: AFL, AFLFast, FairFuzz, MOPT, QSYM, and
Angora. Statistically, TortoiseFuzz found more vulnerabilities
than 5 out of 6 fuzzers (AFL, AFLFast, FairFuzz, MOPT, and
Angora), and it had a comparable result to QSYM yet only
consumed around 2% of QSYM’s memory usage on average. We
also compared coverage accounting metrics with two other met-
rics, AFL-Sensitive and LEOPARD, and TortoiseFuzz performed
significantly better than both metrics in finding vulnerabilities.
Furthermore, we applied the coverage accounting metrics to
QSYM and noticed that coverage accounting helps increase
the number of discovered vulnerabilities by 28.6% on average.
TortoiseFuzz found 20 zero-day vulnerabilities with 15 confirmed
with CVE identifications.

I. INTRODUCTION

Fuzzing has been extensively used to find real-world
software vulnerabilities. Companies such as Google and Apple
have deployed fuzzing tools to discover vulnerabilities, and
researchers have proposed various fuzzing techniques [4, 6, 7,
12, 18, 29, 33, 43, 45, 47, 56, 60, 61]. Specifically, coverage-
guided fuzzing [4, 6, 12, 18, 33, 43, 45, 56, 61] has been
actively studied in recent years. In contrast to generational
fuzzing, which generates inputs based on given format speci-
fications [2, 3, 16], coverage-guided fuzzing does not require
knowledge such as input format or program specifications.
Instead, coverage-guided fuzzing mutates inputs randomly and
uses coverage to select and prioritize mutated inputs.

AFL [60] leverages edge coverage (a.k.a. branch coverage
or transition coverage), and libFuzzer [47] supports both edge
and block coverage. Specifically, AFL saves all inputs with
new edge coverage, and it prioritizes inputs by size and
latency while guaranteeing that the prioritized inputs cover
all edges. Based on AFL, recent work advances the edge
coverage metrics by adding finer-grained information such
as call context [12], memory access addresses, and more
preceding basic blocks [53].

However, previous work treats edges equally, neglecting
that the likelihoods of edge destinations being vulnerable are
different. As a result, for all the inputs that lead to new
coverage, those that execute the newly explored code that is
less likely to be vulnerable are treated as important as the
others and are selected for mutation and fuzzing.

Although such design is reasonable for program testing
which aims at full program coverage, it delays the discovery
of a vulnerability. VUzzer [43] mitigates the issue by de-
prioritizing inputs that lead to error-handling code, but it
depends on taint analysis and thus is expensive. CollAFL [18]
proposes alternative input prioritization algorithms regarding
the execution path, but it cannot guarantee that prioritized
inputs cover all security-sensitive edges and it may cause
the fuzzer to be trapped in a small part of the code. AFL-
Sensitive [53] and Angora [12] add more metrics comple-
mentary to edges, but edges are still considered equally, so
the issue still exists for the inputs with the same value in the
complementary metrics. LEOPARD [15] considers function
coverage instead of edges and it weights functions differently,
but it requires static analysis to preprocess, which causes
extra performance overhead. Even worse, these approaches are
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all vulnerable to anti-fuzzing techniques [23, 28] (See II-D).
Therefore, we need a new input prioritization method that
finds more vulnerabilities and is less affected by anti-fuzzing
techniques.

In this paper, we propose coverage accounting, a new
approach for input prioritization. Our insight is that, any work
that adds additional information to edge representation will
not be able to defeat anti-fuzzing since the fundamental issue
is that current edge-guided fuzzers treat coverage equally.
Moreover, memory corruption vulnerabilities are closely re-
lated to sensitive memory operations, and sensitive memory
operations can be represented at different granularity of func-
tion, loop, and basic block [27]. To find memory corruption
vulnerabilities effectively, we should cover and focus on edges
associated with sensitive memory operations only. Based on
this observation, our approach assesses edges from function,
loop, and basic block levels, and it labels edges security-
sensitive based on the three metrics of different levels. We
prioritize inputs by new security-sensitive coverage, and cull
the prioritized inputs by the hit count of security-sensitive
edges and meanwhile guarantee the selected inputs cover all
visited security-sensitive edges.

Based on the proposed approach, we develop TortoiseFuzz,
a greybox coverage-guided fuzzer1. TortoiseFuzz does not rely
on taint analysis or symbolic execution; the only addition to
AFL is the coverage accounting scheme inserted in the step
of queue culling (See II).

TortoiseFuzz is simple yet powerful in finding vulnera-
bilities. We evaluated TortoiseFuzz on 30 popular real-world
applications and compared TortoiseFuzz with 6 state-of-the-
art greybox [7, 31, 36, 60] and hybrid fuzzers [12, 59]. We
calculated the number of discovered vulnerabilities, and con-
ducted Mann-Whitney U test to justify statistical significance
between TortoiseFuzz and the compared fuzzers. TortoiseFuzz
performed better than 5 out of 6 fuzzers (AFL, AFLFast,
FairFuzz, MOPT, and Angora), and it had a comparable result
to QSYM yet only consumed, on average, around 2% of
the memory resourced used by QSYM. TortoiseFuzz found
20 zero-day vulnerabilities with 15 confirmed with CVE
identifications.

We also compared coverage accounting metrics against
AFL-Sensitive and LEOPARD, and the experiment showed
that our coverage accounting metrics performed significantly
better in finding vulnerabilities than both metrics. Further-
more, we applied the coverage accounting metrics to QSYM,
and we noticed that coverage accounting boosted the number
of discovered vulnerabilities by 28.6% on average.

To foster future research, we will release the prototype of
TortoiseFuzz open-sourced at https://github.com/TortoiseFuzz/
as well as the experiment data for reproducibility.

Contribution. In summary, this paper makes the following
contributions.

• We propose coverage accounting, a novel approach for
input prioritization with metrics that evaluates edges in

1The name comes from a story of Aesop’s Fables. A tortoise is ridiculed
by a rabbit at first in a race, crawls slowly but steadily, and beats the rabbit
finally. As American Fuzzy Lop is a kind of rabbit, TortoiseFuzz wins.
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Fig. 1: The framework of AFL.

terms of the relevance of memory corruption vulnerabil-
ities. Our approach is lightweighted without expensive
analyses, such as taint analysis and symbolic execution,
and is less affected by anti-fuzzing techniques.

• We design and develop TortoiseFuzz, a greybox fuzzer
based on coverage accounting. We will release Tortoise-
Fuzz with source code.

• We evaluated TortoiseFuzz on 30 real-world programs
and compared it with 4 greybox fuzzers and 2 hybrid
fuzzers. As a greybox fuzzer, TortoiseFuzz outperformed
all the 4 greybox fuzzers and 1 hybrid fuzzers. Tortoise-
Fuzz achieved a comparable result to the other hybrid
fuzzer, QSYM, yet only spent 2% of the memory
resource costed by QSYM. TortoiseFuzz also found 20
zero-day vulnerabilities, with 15 confirmed with CVE
IDs.

II. BACKGROUND

In this section, we present the background of coverage-
guided fuzzing techniques. We first introduce the high-level
design of coverage-guided fuzzing, and then explain the details
of input prioritization and input mutation in fuzzing.

A. Coverage-guided Fuzzing

Fuzzing is an automatic program testing technique for gen-
erating and testing inputs to find software vulnerabilities [38].
It is flexible and easy to apply to different programs, as it
does not require the understanding of programs, nor manual
generation of testing cases.

At a high level, coverage-guided fuzzing takes an initial
input (seed) and a target program as input, and produces inputs
triggering program error as outputs. It works in a loop, where
it repeats the process of selecting an input, running the target
program with the input, and generating new inputs based on
the current input and its running result. In this loop, coverage
is used as the fundamental metric to select inputs, which is
the reason why such techniques are called coverage-guided
fuzzing.

Figure 1 shows the architecture of AFL [60], a reputable
coverage-guided fuzzer based on which many other fuzzers
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are developed. AFL first reads all the initial seeds and moves
them to a testcase queue ( 1 ), and then gets a sample
from the queue ( 2 ). For each sample, AFL mutates it with
different strategies ( 3 ) and sends the mutated samples to a
forked server where the testing program will be executed with
every mutated sample ( 4 ). During the execution, the fuzzer
collects coverage information and saves the information in
a global data structure. AFL uses edge coverage, which is
represented by a concatenation of the unique IDs for source
and destination basic blocks, and the global data structure is a
bitmap ( 5 ). If the testing program crashes, the fuzzer marks
and reports it as a proof of concept of a vulnerability ( 6 ).
If the sample is interesting under the metrics, the fuzzer puts
it into the queue and labels it as “favored" if it satisfies the
condition of being favored ( 7 ).

B. Input Prioritization

Input prioritization is to select inputs for future mutation
and fuzzing. Coverage-guided fuzzers leverage the coverage
information associated with the executions to select inputs.
Different fuzzers apply different criteria for testing coverage,
including block coverage, edge coverage, and path coverage.
Comparing to block coverage, edge coverage is more delicate
and sensitive as it takes into account the transition between
blocks. It is also more scalable than path coverage as it avoids
path explosion.

AFL and its descendants use edge coverage for input prior-
itization. In particular, AFL’s input prioritization is composed
of two parts: input filtering (step 7 in Figure 1) and queue
culling (step 1 in Figure 1). Input filtering is to filter out
inputs that are not “interesting”, which is represented by edge
coverage and hit counts. Queue culling is to rank the saved
inputs for future mutation and fuzzing. Queue culling does
not discard yet re-organizes inputs. The inputs with lower
ranks will have less chance to be selected for fuzzing. Input
filtering happens along with each input execution. Queue
culling, on the other hand, happens after a certain number
of input executions which is controlled by mutation energy.

1) Input Filtering

AFL keeps a new input if the input satisfies either of the
following conditions:

• The new input produces new edges between basic blocks.
• The hit count of an existing edge achieves a new scale.

Both conditions require the representation of edge. To bal-
ance between effectiveness and efficiency, AFL represents an
edge of two basic blocks by combining the IDs of the source
and destination basic blocks by shift and xor operations.

cur_location = <COMPILE_TIME_RANDOM>;
bitmap[cur_location ⊕ prev_location]++;
prev_location = cur_location » 1;

For each edge, AFL records whether it is visited, as well
as the times of visit for each previous execution. AFL defines
multiple ranges for the times of visit (i.e., bucketing). Once
the times of visit of the current input achieves a new range,
AFL will update the record and keep the input.

The data structure for such record is a hash map, and
thus is vulnerable for the hash collision. CollAFL [18] points
out a new scheme that mitigates the hash collision issue,
which is complementary to our proposed approach for input
prioritization.

2) Queue Culling

The goal of queue culling is to concise the inputs while
maintaining the same amount of edge coverage. Inputs that
remained from the input filtering process may be repetitive in
terms of edge coverage. In this process, AFL selects a subset
of inputs that are more efficient than other inputs while still
cover all edges that are already visited by all inputs.

Specifically, AFL prefers inputs with less size and less
execution latency. To this end, AFL will first mark all edges
as not covered. In the next, AFL iteratively selects an edge
that is not covered, chooses the input that covers the edge and
meanwhile has the smallest size and execution latency (which
is represented as a score proportional to these two elements),
and marks all edges that the input visits as covered. AFL
repeats this process until all edges are marked as covered.

Note that in AFL’s implementation, finding the best input
for each edge occurs in input filtering rather than in queue
culling. AFL uses a map top-rate with edges as keys and
inputs as values to maintain the best input for each edge. In
the process of input filtering, if AFL decides to keep an input,
it will calculate the score proportional to size and execution
time, and update the top-rate. For each edge along with the
input’s execution path, if its associated input in top-rate is
not as good as the current input in terms of size and execution
time, AFL will replace the value of the edge with the current
input. This is just for ease of implementation: in this way,
AFL does not need a separate data structure to store the kept
inputs in the current energy cycle with their size and latency.
For the details of the algorithm, please refer to Algorithm 1
in Section IV.

3) Advanced Input Prioritization Approaches

Edge coverage, although well balances between code cov-
erage and path coverage, is insufficient for input prioritization
because it does not consider the finer-grained context. Under
such circumstances, previous work proposes to include more
information to coverage representation. Angora [12] proposes
to add a calling stack, and AFL-Sensitive [53] presents mul-
tiple additional information such as memory access address
(memory-access-aware branch coverage) and n-basic block
execution path (n-gram branch coverage).

This advancement improves typical edge coverage to be
finer-grained, but it still suffers from the problem that inputs
may fall into a “cold” part of a program which is less likely
to have memory corruption vulnerabilities yet contributes to
new coverage. For example, error-handling codes typically
do not contain vulnerabilities, and thus fuzzer should avoid
to spend overdue efforts in fuzzing around error-handling
code. VUzzer [43] de-prioritizes the inputs that lead to error
handling codes or frequent paths. However, it requires extra
heavyweight work to identify error-handling codes, which
makes fuzzing less efficient.

CollAFL [18] proposes new metrics that are directly
related to the entire execution path rather than single or
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a couple of edges. Instead of queue culling, it takes the
total number of instructions with memory access as metrics
for input prioritization. However, CollAFL cannot guarantee
that the prioritized inputs cover all the visited edges. As a
consequence, it may fall into a code snippet that involves
intensive memory operations yet is not vulnerable, e.g., a loop
with a string assignment.

LEOPARD [15] keeps queue culling yet add an additional
step, prioritizing the selected inputs from queue culling by
a function-level coverage metrics, rather than choosing ran-
domly in AFL. The approach is able to cover all visited edge
in each fuzzing loop, but it requires to preprocess the targeting
programs for function complexity analysis and thus brings
performance overhead.

C. Input Mutation and Energy Assignment

Generally, input mutation can also be viewed as input
prioritization: if we see the input space as all the combinations
of bytes, then input mutation prioritizes a subset of inputs
from the input space by mutation. Previous work design
comprehensive mutation strategies [12, 26, 31, 58] and optimal
mutation scheduling approaches [36]. These input mutation
approaches are all complementary to our proposed input
prioritization scheme.

Similarly, energy assignment approaches such as
AFLFast [7], AFLGo [6], FairFuzz [31] also prioritizes
inputs by deciding the number of children inputs mutated
from a father input. AFLFast [7] assigns more energy to
the seeds with low frequency based on the Markov chain
model of transition probability. While AFLGo [6] becomes
a directed fuzzer, which allocates more energy on targeted
vulnerable code. FairFuzz [31] marks branches that are hit
fewer times than a pre-defined rarity-cutoff value as rare
branches, and optimizes the distribution of fuzzing energy to
produce inputs to hit a given rare branch.

D. Anti-Fuzzing Techniques

Current anti-fuzzing techniques [23, 28] defeat coverage-
guided fuzzers by two design deficiencies: 1) most coverage-
guided fuzzers do not differentiate the coverage of different
edges, and 2) hybrid fuzzers use heavyweight taint analysis or
symbolic execution. Anti-fuzzing techniques deceive fuzzers
by inserting fake paths, adding a delay in error-handling code,
and obfuscating codes to slow down dynamic analyses.

Current anti-fuzzing techniques make coverage-guided
fuzzers much less effective in vulnerability discovery, causing
85%+ performance decrease in exploring paths. Unfortunately,
many of the presented edge-coverage-based fuzzers [12, 15,
43, 53, 60] suffer from the current anti-fuzzing techniques.
VUzzer is affected due to the use of concolic execution.
LEOPARD, which considers function-level code complexity
as a metric for input prioritization, is vulnerable to fake
paths insertion. As path insertion increases the complexity of
the function with inserted paths, LEOPARD will mistakenly
prioritize the inputs that visit these functions while does not
prioritize the inputs that skip the inserted paths in the function.
As a consequence, inputs that execute the inserted path will
be more likely to be prioritized.

AFL, Angora, and AFL-Sensitive are also affected by fake
paths because fake paths contribute to more code coverage.
More generally, any approach that adds more information to
edge representation yet still treat edge equally will be affected
by anti-fuzzing. Essentially, this is because that edge coverage
is treated equally despite the fact that edges have different
likelihoods in leading to vulnerabilities.

III. COVERAGE ACCOUNTING

Prior coverage-guided fuzzers [4, 6, 7, 12, 33, 45, 47, 56,
60, 61] are limited as they treat all blocks and edges equally.
As a result, these tools may waste time in exploring the codes
that are less likely to be vulnerable, and thus are inefficient
in finding vulnerabilities. Even worse, prior work can be
undermined by current anti-fuzzing techniques [23, 28] which
exploit the design deficiency in current coverage measurement.

To mitigate this issue, we propose coverage accounting,
a new approach to measure edges for input prioritization.
Coverage accounting needs to meet two requirements. First,
coverage accounting should be lightweighted. One purpose
of coverage accounting is to shorten the time to find a
vulnerability by prioritizing inputs that are more likely to
trigger vulnerabilities. If coverage accounting takes long, it
will not be able to shorten the time.

Second, coverage accounting should not rely on taint
analysis or symbolic execution. This is because that coverage
accounting needs to defend against anti-fuzzing. Since current
anti-fuzzing techniques are capable of defeating taint analysis
and symbolic execution, we should avoid using these two
analyses in coverage accounting.

Based on the intuition that memory corruption vulner-
abilities are directly related to memory access operations,
we design coverage accounting for memory errors as the
measurement of an edge in terms of future memory access
operations. Furthermore, inspired by HOTracer [27], which
treats memory access operations at different levels, we present
the latest and future memory access operations from three
granularity: function calls, loops, and basic blocks.

Our design is different from known memory access-related
measurements. CollAFL [18] counts the total number of
memory access operations throughout the execution path,
which implies the history memory access operations. Wang
et al. [53] apply the address rather than the count of memory
access. Type-aware fuzzers such as Angora [12], TIFF [26],
and ProFuzzer [58] identify inputs that associated to specific
memory operations and mutate towards targeted programs or
patterns, but they cause higher overhead due to type inference,
and that input mutation is separate from input prioritization
in our context that could be complementary to our approach.

1) Function Calls

On the function call level, we abstract memory access
operations as the function itself. Intuitively, if a function was
involved in a memory corruption, appearing in the call stack
of the crash, then it is likely that the function will be involved
again due to patch incompleteness or developers’ repeated
errors, and we should prioritize the inputs that will visit this
function.
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TABLE I: Top 20 vulnerability involved functions.

Function Number Function Number

memcpy 80 vsprintf 9
strlen 35 GET_COLOR 7
ReadImage 17 read 7
malloc 15 load_bmp 6
memmove 12 huffcode 6
free 12 strcmp 6
memset 12 new 5
delete 11 getName 5
memcmp 10 strncat 5
getString 9 png_load 5

Inspired by VCCFinder [41], we check the information
of disclosed vulnerabilities on the Common Vulnerabilities
and Exposures2 in the latest 4 years to find the vulnerability-
involved functions. We crawl the reference webpages on CVE
descriptions and the children webpages, extract the call stacks
from the reference webpages and synthesize the involved
functions. Part of them are shown in Table I (the top 20
vulnerability functions). We observe from this table that the
top frequent vulnerability-involved functions are mostly from
libraries, especially libc, which matches with the general
impression that memory operation-related functions in libc
such as strlen and memcpy are more likely to be involved
in memory corruptions.

Given the vulnerability-involved functions, we assess an
edge by the number of vulnerability-involved functions in the
destination basic block. Formally, let F denote for the set
of vulnerability-involved functions, let dste denote for the
destination basic block of edge e, and let C(b) denote for
the calling functions in basic block b. For an e, we have:

Func(e) = card
(
C(dste) ∩ F

)
(1)

where Func(e) represents the metric, and card(·) represents
for the cardinality of the variable as a set.

2) Loops

Loops are widely used for accessing data and are closely
related to memory errors such as overflow vulnerabilities.
Therefore, we introduce the loop metric to incentivize inputs
that iterate a loop, and we use the back edge to indicate that.
To deal with back edges, we introduce CFG-level instrumen-
tation to track this information, instead of the basic block
instrumentation. We construct CFGs for each module of the
target program, and analyze the natural loops by detecting
back edges [1]. Let function IsBackEdge(e) be a boolean
function outputting whether or not edge e is a back edge.
Given an edge indicated by e, we have the loop metric
Loop(e) as follows:

Loop(e) =

{
1, if IsBackEdge(e) = True

0, otherwise
(2)

3) Basic Blocks

The basic block metric abstracts the memory operations
that will be executed immediately followed by the edge.

2For prototype, we use CVE dataset, https://cve.mitre.org/

As a basic block has only one exit, all instructions will be
executed, and the memory access in this basic block will also
be enforced. Therefore, it is reasonable to consider the basic
block metric as the finest granularity for coverage accounting.

Specifically, we evaluate an edge by the number of instruc-
tions that involve memory operations. Let IsContainMem(i)
be a boolean function for whether or not an instruction i
contains memory operations. For edge e with destination basic
block dste, we evaluate the edge by the basic block metric
BB(e) as follows:

BB(e) = card
({

i|i ∈ dste ∧ IsContainMem(i)
})

(3)

Discussion: Coverage accounting design. One concern is
that the choice of the vulnerable is too specific and heuristic-
based. We try to make it more general by selecting based
on commit history and vulnerability reports, which is also
acceptable by related papers [34, 35, 40, 44]. One may
argue that this method cannot find vulnerabilities associated
with functions that were not involved in any vulnerabilities
before or custom functions. This concern is valid, but can
be resolved by the other two metrics in a finer granularity
as the three coverage accounting metrics are complementary.
Moreover, all three metrics contribute to the final results of
finding vulnerabilities (More details in subsection “Coverage
accounting metrics" in Section VI-D).

Another way to select vulnerable functions is code analysis
and there is a recent relevant paper LEOPARD [15] which
is according to the complexity score and vulnerability score
of functions. The score is calculated based on several code
features including loops and memory accesses, which is more
like the combination of all three coverage accounting metrics
we propose. As the paper of LEOPARD mentioned that it
could be used for fuzzing, we set an experiment to compare
with it on our data set (More details in subsection “Coverage
accounting vs. other metrics" in Section VI-D).

IV. THE DESIGN OF TORTOISEFUZZ

On the high-level, the goal of our design is to prioritize
the inputs that are more likely to lead to vulnerable code,
and meanwhile ensure the prioritized inputs cover enough
code to mitigate the issue that the fuzzer gets trapped or
misses vulnerabilities. There are three challenges for the goal.
The first challenge is how to properly define the scope of
the code to be covered and select a subset of inputs that
achieve the complete coverage. Basically AFL’s queue culling
algorithm guarantees that the selected inputs will cover all
visited edges. Our insight is that, since memory operations
are the prerequisite of memory errors, only security-sensitive
edges matter for the vulnerabilities and thus should be fully
covered by selected input. Based on this insight, we re-scope
the edges from all visited edges to security-sensitive only,
and we apply AFL’s queue culling algorithm on the visited
security-sensitive edges. In this way, we are able to select a
subset of inputs that cover all visited security-sensitive edges.

The following challenge is how to define security-sensitive
with coverage accounting. It is intuitive to set a threshold for
the metrics, and then define edges exceeding the threshold as
security sensitive. We set the threshold conservatively: edges
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are security sensitive as long as the value of the metrics is
above 0. We leave the investigation on the threshold as future
work (see Section VII).

The last challenge is how to make fuzzing evolve towards
vulnerabilities. Our intuition is that, the more an input hits a
security-sensitive edge, the more likely the input will evolve
to trigger a vulnerability. We prioritize an input with hit count,
based on the proposed metrics for coverage accounting.

Based on the above considerations, we decide to design
TortoiseFuzz based upon AFL, and remain the combination
of input filtering and queue culling for input prioritization.
TortoiseFuzz, as a greybox coverage-guided fuzzer with cov-
erage accounting for input prioritization, is lightweighted and
robust to anti-fuzzing. For the ease of demonstration, we show
the algorithm of AFL in Algorithm 1, and explain our design
(marked in grey) based on AFL’s algorithm.

Algorithm 1 Fuzzing algorithm with coverage accounting
1: function FUZZING(Program, Seeds)
2: P ← INSTRUMENT(Program, CovFb, AccountingFb) . Instr.

Phase
3: // AccountingFb is FunCallMap, LoopMap, or InsMap

4: INITIALIZE(Queue, CrashSet, Seeds)
5: INITIALIZE(CovFb, accCov, TopCov)
6: INITIALIZE(AccountingFb, accAccounting, TopAccounting)
7: // accAccounting is MaxFunCallMap, MaxLoopMap, or MaxInsMap
8: repeat . Fuzzing Loop Phase
9: input ← NEXTSEED(Queue)

10: NumChildren ← MUTATEENERGY(input)
11: for i = 0 → NumChildren do
12: child ← MUTATE(input)
13: IsCrash, CovFb, AccountingFb ← RUN(P, child)
14: if IsCrash then
15: CrashSet ← CrashSet ∪ child
16: else if SAVE_IF_INTERESTING(CovFb, accCov) then
17: TopCov, TopAccounting ←
18: UPDATE(child, CovFb, AccountingFb, accAccounting)
19: Queue ← Queue ∪ child
20: end if
21: end for
22: CULL_QUEUE(Queue, TopCov, TopAccounting)
23: until time out
24: end function

A. Framework

The process of TortoiseFuzz is shown in Algorithm 1.
TortoiseFuzz consists of two phases: instrumentation phase
and fuzzing loop phase. In the instrumentation phase (Sec-
tion IV-B), the target program is instrumented with codes for
preliminary analysis and runtime execution feedback. In the
fuzzing loop phase (Section IV-C), TortoiseFuzz iteratively
executes the target program with testcases, appends interesting
samples to the fuzzing queue based on the execution feedback,
and selects inputs for future iterations.

B. Instrumentation Phase

The instrumentation phase is to insert runtime analysis
code into the program. For source code, we add the analysis
code during compilation; otherwise, we rewrite the code to

insert the instrumentation. If the target requires specific types
of inputs, we modify the I/O interface with instrumentation.
The inserted runtime analysis code collects the statistics for
coverage and security sensitivity evaluation.

C. Fuzzing Loop Phase

The fuzzing loop is described from line 8 to 23 in
Algorithm 1. Before the loop starts, TortoiseFuzz first creates a
sample queue Queue from the initial seeds and a set of crashes
CrashSet (line 4). The execution feedback for each sample is
recorded in the coverage feedback map (i.e., CovFb at line 5)
and accounting feedback map (i.e., AccountingFb at line 6).
The corresponding maps accCov (line 5) and accAccounting
(line 6) are global accumulated structures to hold all covered
transitions and their maximum hit counts. The TopCov and
TopAccounting are used to prioritize samples.

For each mutated sample, TortoiseFuzz feeds it to the
target program and reports if the return status is crashed.
Otherwise, it uses the function Save_If_Interesting to append
it to the sample queue Queue if it matches the input filter
conditions (new edges or hit bucket change) (line 16). It will
also update the structure accCov .

For the samples in Queue , the function NextSeed selects
a seed for the next test round according to the probability
(line 9), which is determined by the favor attribute of the
sample. If the value of favor is 1, then the probability is 100%;
otherwise it is 1%. The origin purpose of favor is to have a
minimal set of samples that could cover all edges seen so far,
and turn to fuzz them at the expense of the rest. We improve
the mechanism to prioritize mutated samples with two steps,
Update (line 18) and Cull_Queue (line 22). More specifically,
Update will update the structure accAccounting and return the
top rated lists TopCov and TopAccounting, which are used in
the following step of function Cull_Queue.

1) Updating Top Rated Candidates

To prioritize the saved interesting mutations, greybox
fuzzers (e.g., AFL) maintain a list of entries TopCov for each
edge edgei to record the best candidates, samplej , that are
more favorable to explore. As shown in Formula 4, samplej is
“favor” for edgei as the sample can cover edgei and there are
no previous candidates, or if it has less cost than the previous
ones (i.e., execution latency multiplied by file size).

TopCov [edgei] =


samplej , CovFbj [edgei] > 0

∧ (TopCov [edgei] = ∅
∨ IsMin(exec_timej ∗ sizej)

0, otherwise
(4)

Cost-favor entries are not sufficient for the fuzzer to keep
the sensitivity information to the memory operations; hence,
TortoiseFuzz maintains a list of entries for each memory-
related edge to record the “memory operation favor”. As
Formula 5 shows, if there is no candidate for edgei, or if the
samplej could max the hit count of edge edgei, we mark it as
“favor”. If the hit count is the same with the previous saved
one, we mark it as “favor” if the cost is less. The AccountingFb
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and accAccounting are determined by coverage accounting.

TopAccounting [edgei] =


samplej , (TopAccounting [edgei] == ∅ ∧ CovFbj [edgei] > 0)

∨ AccountingFbj [edgei] > accAccounting [edgei]
∨ (AccountingFbj [edgei] == accAccounting [edgei]
∧IsMin(exec_timej ∗ sizej))

0, otherwise
(5)

2) Queue Culling

The top-rated candidates recorded by TopAccounting are
a superset of samples that can cover all the security-sensitive
edges seen so far. To optimize the fuzzing effort, as shown in
Algorithm 2, TortoiseFuzz re-evaluates all top rated candidates
after each round of testing to select a quasi-minimal subset
of samples that cover all of the accumulated memory related
edges and have not been fuzzed. First, we create a temporal
structure Temp_map to hold all the edges seen up to now.
During traversing the seed queue Queue, if a sample is labeled
with “favor”, we will choose it as final “favor” (line 9). Then
the edges covered by this sample is computed and the temporal
Temp_map (line 10) is updated. The process proceeds until
all the edges seen so far are covered. With this algorithm, we
select favorable seeds for the next generation and we expect
they are more dangerous to memory errors (line 13).

However, TortoiseFuzz prefers to exploring program states
with less breadth than the original path coverage. This may re-
sult in a slow increase of samples in Queue and fewer samples
with the favor attributes. To solve this problem, TortoiseFuzz
uses the original coverage-sensitive top rated entries TopCov to
re-cull the Queue while there is no favor sample in the Queue
(line 15-24). Also, whenever the TopAccounting is changed
(line 5), TortoiseFuzz will switch back to the security-sensitive
strategy.

Algorithm 2 Cull Queue
1: function CULL_QUEUE(Queue, TopCov, TopAccounting)
2: for q = Queue.head → Queue.end do
3: q.favor = 0
4: end for
5: if IsChanged(TopAccounting) then
6: Temp_map ← accCov[MapSize]
7: for i = 0 → MapSize do
8: if TopAccounting[i] && TopAccounting[i].unfuzzed then
9: TopAccounting[i].favor = 1

10: UPDATE_MAP(TopAccounting[i], Temp_map)
11: end if
12: end for
13: SYN(Queue, TopAccounting)
14: else
15: // switch back to TopCov with coverage-favor
16: for i = 0 → MapSize do
17: Temp_map ← accCov[MapSize]
18: if TopCov[i] && Temp_map[i] then
19: TopCov[i].favor = 1
20: UPDATE_MAP(TopCov[i], Temp_map)
21: end if
22: end for
23: SYN(Queue, TopCov)
24: end if
25: end function

Discussion: Defending against anti-fuzzing. Current anti-
fuzzing techniques defeat prior fuzzing tools by inserting fake
paths that trap fuzzers, adding a delay in error-handling code,

and obfuscating code to slow down taint analysis and symbolic
execution. TortoiseFuzz, along with coverage accounting, is
robust to code obfuscation as it does not require taint analysis
or symbolic execution. It is also not highly affected by
anti-fuzzing because input prioritization helps to avoid the
execution of error-handling code since error-handling code
do not typically contain intensive memory operation. Also
coverage accounting is robust to inserted fake branches created
by Fuzzification [28], which the branches are composed of
pop and ret. As Coverage accounting does not consider pop
and ret as security-sensitive operations, it will not prioritize
inputs that visit fake branches.

One may argue that a simple update for anti-fuzzing will
defeat TortoiseFuzz, such as adding memory operations in
fake branches. However, since memory access costs much
more than other operations such as arithmetic operations,
adding memory access operations in fake branches may cause
slowdown and affect the performance for normal inputs, which
is not acceptable for real-world software. Therefore, one has
to carefully design fake branches that defeat TortoiseFuzz
and keep reasonable performance, which is much harder than
the current anti-fuzzing methods. Therefore, we argue that
although TortoiseFuzz is not guaranteed to defend against all
anti-fuzzing techniques now and future, it will significantly
increase the difficulty of successful anti-fuzzing.

V. IMPLEMENTATION

TortoiseFuzz is implemented based on AFL [60]. Besides
the AFL original implementation, TortoiseFuzz consists of
about 1400 lines of code including instrumentation (∼700
lines in C++) and fuzzing loop (∼700 lines in C). We also
wrote a python program of 34 lines to crawl the vulnerability
reports. For the function call level coverage accounting, we
get the function names in instructions by calling getCalled-
Function() in the LLVM pass, and calculate the weight value
by matching with the list of high-risk functions in Table I.
For the loop level coverage accounting, we construct the CFG
with adjacency matrix and then use the depth-first search
algorithm to traverse the CFG and mark the back edges.
For the basic block level coverage accounting, we mark the
memory access characteristics of the instructions with the
mayReadFromMemory() and mayWriteToMemory() functions
from LLVM [30].

VI. EVALUATION

In this section, we evaluate coverage accounting by testing
TortoiseFuzz on real-world applications. We will answer the
following research questions:

• RQ1: Is TortoiseFuzz able to find real-world zero-day
vulnerabilities?
• RQ2: How do the results of TortoiseFuzz compare to pre-

vious greybox or hybrid fuzzers in real-world programs?
• RQ3: How do the results of the three coverage account-

ing metrics compare to other coverage metrics or input
prioritization approaches?
• RQ4: Is coverage accounting able to cooperate with

other fuzzing techniques and help improve vulnerability
discovery?
• RQ5: Is coverage accounting robust against the current

anti-fuzzing technique?
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TABLE II: Compared fuzzers.

Fuzzer Year Type Open Target Select

AFL 2016 greybox Y S/B1 X
AFLFast 2016 greybox Y S/B X
Steelix 2017 greybox N S
VUzzer 2017 hybrid Y2 B
CollAFL 2018 greybox N S
FairFuzz 2018 greybox Y S X
T-fuzz 2018 hybrid Y3 B
QSYM 2018 hybrid Y S X
Angora 2018 hybrid Y S X
MOPT 2019 greybox Y S X
DigFuzz 2019 hybrid N S
ProFuzzer 2019 hybrid N S

1 S: target source code, B: target binary.
2 VUzzer depends on external IDA Pro and pintool, and instrumenting with

real-world program is too expensive to be scalable in our experiment
environment. Also, VUzzer did not perform as well as other hybrid tools
such as QSYM. Under such condition, we did not include VUzzer in
real-world program experiment.

3 Some components of these tools cannot work for all binaries.

A. Experiment Setup

Dataset. We collected 30 applications from the papers pub-
lished from 2016 to 2019. The applications include image
parsing and processing libraries, text parsing tools, an as-
sembly tool, multimedia file processing libraries, language
translation tools, and so on. We selected the latest version
of the testing applications by the time we ran the experiment.

One may argue that the experiment dataset is lack of other
test suites such as LAVA-M. We find that LAVA-M does not
fit for evaluating fuzzer effectiveness since it does not reflect
the real-world scenarios. We will further discuss the choice of
dataset in Section VII.

In our evaluation, we found that there are 18 applications
from which no fuzzers found any vulnerabilities. For ease
of demonstration, we will only show the results for the 12
applications with found vulnerabilities throughout the rest of
the evaluation.

Compared fuzzers. We collected recent fuzzers published
from 2016 to 2019 as the candidate for comparison, as shown
in Table II. We consider each fuzzer regarding whether or
not it is open-source, and whether or not it can run on our
experiment dataset. We filtered tools that are not open-source
or do not scale to our test real-world programs and thus cannot
be compared. The remained compared fuzzers are 4 greybox
fuzzers (AFL, AFLFast, FairFuzz and MOPT) and 2 hybrid
fuzzers (QSYM and Angora). For detailed explanations for
each fuzzer, we refer readers to the footnote in Table II.

Environment and process. We ran our experiments on eight
identical servers with 32 CPU Intel(R) Xeon(R) CPU E5-
2630 V3@2.40GHZ cores, 64GB RAM, and 64-bits Ubuntu
16.04.3 TLS. For each target application, we configured all
fuzzers with the same seed3 and dictionary set4. We ran each
fuzzer with each target program for 140 hours according to
CollAFL [18], and we repeated all experiments for 10 times
as advised by Klees et al. [29].

3We select an initial seed randomly from the testcase set provided by the
target program.

4We do not use the dictionary in the experiment.

We identified vulnerabilities in two steps. Given reported
crashes, we first filtered out invalid and redundant crashes
using a self-written script with ASan [46] then manually
inspected the remaining crashes and reported those that are
security related. For code coverage, we used gcov [20], which
is a well-known coverage analysis tool.

B. RQ1: Finding Zero-day Vulnerabilities

Table III shows the union of the real-world vulnerabilities
identified by TortoiseFuzz in the 10 times of the experiment.
The table presents each discovered vulnerability with its ID,
the corresponding target program, the vulnerability type and
whether it is a zero-day vulnerability. In total, TortoiseFuzz
found 56 vulnerabilities in 10 different types, including stack
buffer overflow, heap buffer overflow, use after free, and
double free vulnerabilities, many of which are critical and may
lead to severe consequences such as arbitrary code execution.
Among the 56 found vulnerabilities, 20 vulnerabilities are
zero-day vulnerabilities, and 15 vulnerabilities have been
confirmed with a CVE identification5. The result indicates that
TortoiseFuzz is able to identify a reasonable number of zero-
day vulnerabilities from real-world applications.

C. RQ2: TortoiseFuzz vs. Other Fuzzers in Real-world Ap-
plications

In this experiment, we tested and compared TortoiseFuzz
with greybox fuzzers and hybrid fuzzers on real-world appli-
cations. We evaluated each fuzzer by three metrics: discovered
vulnerabilities, code coverage, and performance.

Discovered vulnerabilities. Table IV shows the average and
the maximum numbers of vulnerabilities found by each fuzzer
among 10 repeated runs. The table also shows the p-value
of the Mann-Whitney U test between TortoiseFuzz and a
comparing fuzzer regarding the total number of vulnerabilities
found from all target programs in each of the 10 repeated
experiment.

Our experiment shows that TortoiseFuzz is more effective
than the other testing greybox fuzzers in finding vulnerabili-
ties from real-world applications. TortoiseFuzz detected 41.7
vulnerabilities on average and 50 vulnerabilities in maximum,
which outperformed all the other greybox fuzzers. Compar-
ing to FairFuzz, the second best-performed greybox fuzzers,
TortoiseFuzz found 43.9% more vulnerabilities on average
and 31.6% more in maximum. Additionally, we compared
the set of vulnerabilities in the best run of each fuzzer, and
we observed that TortoiseFuzz covered all but 1 vulnerability
found by the other fuzzer, and TortoiseFuzz found 10 more
vulnerabilities that none of the other fuzzers discovered.

For hybrid fuzzers, TortoiseFuzz showed a better result
than Angora and a comparable result with QSYM. Tortoise-
Fuzz outperformed Angora by 61.6% on the sum of average
and by 56.3% on the sum of the maximum numbers of
vulnerabilities for each target programs among the 10 times
of the experiment. TortoiseFuzz also detected more or equal
vulnerabilities from 91.7% (11/12) of the target applications.
TortoiseFuzz found slightly more vulnerabilities than QSYM

5CVE-2018-17229 and CVE-2018-17230 are contained in both exiv2 and
new_exiv2.
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TABLE III: Real-world Vulnerabilities found by TortoiseFuzz.

Program Version ID Vulnerability Type New

exiv2 0.26

CVE-2018-16336 heap-buffer-overflow X
CVE-2018-17229 heap-buffer-overflow X
CVE-2018-17230 heap-buffer-overflow X
issue_400 heap-buffer-overflow X
issue_460 stack-buffer-overflow -
CVE-2017-11336 heap-buffer-overflow -
CVE-2017-11337 invalid free -
CVE-2017-11339 heap-buffer-overflow -
CVE-2017-14857 invalid free -
CVE-2017-14858 heap-buffer-overflow -
CVE-2017-14861 stack-buffer-overflow -
CVE-2017-14865 heap-buffer-overflow -
CVE-2017-14866 heap-buffer-overflow -
CVE-2017-17669 heap-buffer-overflow -
issue_170 heap-buffer-overflow -
CVE-2018-10999 heap-buffer-overflow -

new_exiv2 0.26

CVE-2018-17229 heap-buffer-overflow X
CVE-2018-17230 heap-buffer-overflow X
CVE-2017-14865 heap-buffer-overflow -
CVE-2017-14866 heap-buffer-overflow -
CVE-2017-14858 heap-buffer-overflow -

exiv2_9.17 0.26 CVE-2018-17282 null pointer dereference X

nasm 2.14rc4

CVE-2018-8882 stack-buffer-under-read -
CVE-2018-8883 stack-buffer-over-read -
CVE-2018-16517 null pointer dereference -
CVE-2018-19209 null pointer dereference -
CVE-2018-19213 memory leaks -

gpac 0.7.1

CVE-2019-20165 null pointer dereference X
CVE-2019-20169 heap-use-after-free X
CVE-2018-21017 memory leaks X
CVE-2018-21015 Segment Fault X
CVE-2018-21016 heap-buffer-overflow X
issue_1340 heap-use-after-free -
issue_1264 heap-buffer-overflow -
CVE-2018-13005 heap-buffer-over-read -
issue_1077 heap-use-after-free -
issue_1090 double-free -

libtiff 4.0.9 CVE-2018-15209 heap-buffer-overflow X
CVE-2018-16335 heap-buffer-over-read X

liblouis 3.7.0 CVE-2018-11440 stack-buffer-overflow -
issue_315 memory leaks -

ngiflib 0.4

issue_10 stack-buffer-overflow X
CVE-2019-16346 heap-buffer-overflow X
CVE-2019-16347 heap-buffer-overflow X
CVE-2018-11575 stack-buffer-overflow -
CVE-2018-11576 heap-buffer-over-read -

libming 0_4_8 CVE-2018-13066 memory leaks -
(2 similar crashes) memory leaks -

catdoc 0_95
crash memory leaks -
crash Segment Fault -
CVE-2017-11110 heap-buffer-underflow -

tcpreplay 4.3 CVE-2018-20552 heap-buffer-overflow X
CVE-2018-20553 heap-buffer-overflow X

flvmeta 1.2.1 issue_13 null pointer dereference X
issue_12 heap-buffer-overflow -

on average and equal vulnerabilities in maximum. For each
target program, specifically, TortoiseFuzz performed better
than QSYM in 7 programs, equally in 2 programs, and worse
in 3 programs. Based on the Mann-Whitney U test, the
result between TortoiseFuzz and QSYM was not statistically
significant, and thus we consider TortoiseFuzz comparable to
QSYM in finding vulnerabilities from real-world programs.

Furthermore, we compared the union set of the discovered
vulnerabilities across 10 repeated runs between TortoiseFuzz
and QSYM. While TortoiseFuzz missed 9 vulnerabilities
found by QSYM, only one of them is a zero-day vulnerability.

The zero-day vulnerability is in the parse_mref function
of nasm. We analyzed the missing cases and found that, some
of the vulnerabilities are protected by conditional branches
related to the input file, which does not belong to any of our
metrics and thus the associated inputs cannot be prioritized.

Overall, our experiment results show that TortoiseFuzz
outperformed AFL, AFLFast, FairFuzz, MOPT, and Angora,
and it is comparable to QSYM in finding vulnerabilities.

Code coverage. In addition to the number of found vul-
nerabilities, we measured the code coverage of the testing
fuzzers across different target programs. Although coverage
accounting does not aim to improve code coverage, measuring
code coverage is still meaningful, as it is an import metrics
for evaluating program testing techniques. We also want to
investigate if coverage accounting affects code coverage in
the fuzzing process.

To investigate the impact on code coverage caused by
coverage accounting, we compare the code coverage between
TortoiseFuzz and AFL, the fuzzer based on which coverage
accounting is implemented. Table V shows the average code
coverage of all fuzzers performing on the target programs,
and Table VI shows the p-value of the Mann-Whitney U test
between TortoiseFuzz and other fuzzers. Based on Table V,
we observe that TortoiseFuzz had a better coverage than AFL
on average for 75% (9/12) of the target programs. In terms of
statistical significance, 3 out of 12 programs are statistically
different in coverage, and TortoiseFuzz has a higher average
value for all the three cases, which implies that TortoiseFuzz
is statistically better than AFL in code coverage. Therefore,
coverage accounting does not affect code coverage in fuzzing
process.

Comparing TortoiseFuzz to other fuzzers, we observe that
although TortoiseFuzz does not aim to high coverage, its
performance is fair among all fuzzers. Most of the results are
not statistically significant between TortoiseFuzz and AFL,
AFLFast, and FairFuzz. Between TortoiseFuzz and MOPT,
TortoiseFuzz performed statistically better in three cases,
whereas MOPT performed statistically better in two cases.
TortoiseFuzz’s results are statistically higher than that of
Angora in most cases, not as good as that of QSYM.

Furthermore, we study the variability of the code coverage
of each testing fuzzer and target program, shown in Figure 2
and Table VII. We observe from the figure that the perfor-
mance of TortoiseFuzz in code coverage is stable in most of
the testing cases: the interquartile range is below 2% for 11
out of 12 of the testing programs.

Performance. Given that TortoiseFuzz had a comparable
result with QSYM, we compare the resource performance
of TortoiseFuzz to that of the hybrid fuzzer QSYM. For
each of the 10 repeated experiment, we logged the memory
usage of QSYM and TortoiseFuzz every five seconds, and we
show the memory usage of each fuzzer and each targeting
program in Figure 3. The figure indicates that TortoiseFuzz
spent less memory resources than QSYM, which reflects the
fact that hybrid fuzzers need more resources to execute heavy-
weighted analyses such as taint analysis, concolic execution,
and constraint solving.

Case study. To better understand the internal of why Tortoise-
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TABLE IV: The Average Number of Vulnerabilities Identified by Each Fuzzer.

Program
Grey-box Fuzzers Hybrid Fuzzers

TortoiseFuzz AFL AFLFast FairFuzz MOPT Angora QSYM
Average Max Average Max Average Max Average Max Average Max Average Max Average Max

exiv2 9.7 12 9.0 12 5.4 9 7.1 10 8.7 11 10.0 13 8.3 10
new_exiv2 5.0 5 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 6.5 9
exiv2_9.17 1.0 1 0.9 1 0.4 1 0.7 1 0.8 1 0.0 0 1.8 2
gpac 7.6 9 3.5 6 4.8 7 6.6 9 4.0 6 6.0 8 7.5 9
liblouis 1.2 2 0.3 1 0.0 0 0.9 2 0.1 1 0.0 0 2.3 3
libming 3.0 3 2.9 3 3.0 3 3.0 3 0.0 0 3.0 3 3.0 3
libtiff 1.2 2 0.0 0 0.0 0 0.0 0 0.0 0 0.0 0 0.4 1
nasm 3.0 4 1.7 2 2.2 3 2.2 3 3.8 5 1.8 2 2.8 4
ngiflib 4.7 5 4.4 5 3.2 5 4.0 5 2.7 5 3.0 4 4.5 5
flvmeta 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2
tcpreplay 1.2 2 0.0 0 0.0 0 0.5 1 0.0 0 -∗ -∗ 0.0 0
catdoc 2.1 3 1.3 2 1.2 2 2.0 2 0.3 1 0.0 0 2.0 2
SUM 41.7 50 26.0 34 22.2 32 29.0 38 22.4 32 25.8 32 41.1 50
p-value of the Mann-Whitney U test 0.0001668 0.0001668 0.0001649 0.0001659 0.0001668 1.0
* Angora run abnormally. For all 360 pcap files included in the test suit, Angora reported the error log "There is none constraint in the seeds".
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Fig. 2: The variability of the code coverage of different fuzzers with different target programs.

TABLE V: Code coverage (average in 10 runs) of the target
applications achieved by various fuzzers. The highest values
among fuzzers are highlighted in blue.

Program Grey-box Fuzzers Hybrid Fuzzers
TortoiseFuzz AFL AFLFast FairFuzz MOPT Angora QSYM

exiv2 19.77% 16.65% 15.00% 20.02% 19.53% 23.65% 22.23%
new_exiv2 19.83% 14.71% 11.67% 19.44% 15.86% 8.29% 21.40%
exiv2_9.17 19.16% 15.41% 13.27% 18.37% 20.53% 8.03% 23.38%
gpac 3.92% 3.86% 3.31% 4.64% 3.47% 7.07% 5.63%
liblouis 29.44% 26.65% 29.53% 28.30% 29.47% 23.41% 31.42%
libming 21.00% 20.85% 21.01% 21.08% 21.05% 19.66% 21.10%
libtiff 39.00% 41.62% 36.27% 40.09% 38.42% 37.75% 42.77%
nasm 30.64% 29.83% 30.71% 31.98% 33.27% 27.70% 32.22%
ngiflib 76.13% 76.40% 76.31% 75.67% 76.15% 75.59% 76.52%
flvmeta 12.16% 12.10% 12.10% 12.16% 12.13% 12.05% 12.10%
tcpreplay 20.17% 17.89% 21.34% 18.20% 11.71% - 17.61%
catdoc 48.12% 49.98% 39.90% 49.98% 29.74% 47.10% 62.80%

Fuzz managed to find zero-days vulnerabilities, we conduct
a case study to investigate the fuzzing process and compare
TortoiseFuzz to other fuzzers such as AFL. Figure 4 shows the
fuzzing process of TortoiseFuzz and AFL for finding CVE-
2018-163356. The Seed ID indicates the ID of the testing
inputs generated by each fuzzer. The lines in the figure shows
the evolution of the generated seeds along with the fuzzing
loop. The label of the nodes in the line of TortoiseFuzz shows

6https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-16335

TABLE VI: p-values of the Mann-Whitney U test on the code
coverage in 10 runs.

Program AFL AFLFast FairFuzz MOPT Angora QSYM
exiv2 6.23E-01 7.04E-01 1.40E-01 2.25E-01 1.80E-04 1.79E-04
exiv2_new 2.30E-02 1.65E-03 2.40E-01 1.31E-03 1.57E-04 1.30E-01
exiv2_9.17 6.23E-01 3.62E-01 2.56E-01 4.56E-03 1.71E-04 1.78E-04
gpac 4.48E-01 1.72E-01 2.89E-01 9.54E-02 1.75E-04 2.76E-04
liblouis 2.75E-04 6.15E-01 3.23E-01 5.69E-01 1.54E-04 2.03E-04
libming 1.68E-01 3.68E-01 4.41E-04 1.37E-02 5.94E-05 1.59E-05
libtiff 7.61E-01 2.49E-02 7.90E-01 9.90E-02 1.10E-01 1.83E-01
nasm 1.01E-01 6.21E-01 8.50E-01 1.63E-03 2.07E-03 5.61E-03
ngiflib 4.39E-01 5.18E-01 9.32E-01 1.43E-01 2.13E-01 2.60E-01
flvmeta 5.02E-03 5.02E-03 1.00E+00 2.04E-01 1.35E-03 5.02E-03
tcpreplay 9.29E-02 4.24E-01 4.02E-01 2.02E-02 - 6.75E-01
catdoc 2.18E-01 6.56E-01 9.67E-02 7.46E-02 1.55E-02 1.19E-04

the metric causing the seed to be prioritized.

Based on the figure, we find that TortoiseFuzz and AFL
and TortoiseFuzz deviated in the second round of fuzzing.
AFL prioritized other seeds over Seed 147, since Seed 147 is
memory-intensive and results in longer execution time. How-
ever, we consider memory operations as a coverage accounting
metric, and thus TortoiseFuzz prioritized the seed. As a result,
Seed 147 evolved and finally became the input that triggers
the vulnerability. This case indicates that memory operations,
although cost longer execution time, helps to generate inputs
that triggering memory corruption errors and thus should be
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Fig. 3: Memory resource usage of QSYM and TortoiseFuzz.

TABLE VII: The variance of the code coverage.

Program Grey-box Fuzzers Hybrid Fuzzers
TortoiseFuzz AFL AFLFast Fairfuzz MOPT Angora QSYM

exiv2 7.61E-06 3.18E-03 4.47E-03 2.71E-04 4.00E-04 6.52E-05 1.08E-04
exiv2_new 3.29E-04 4.11E-03 3.53E-03 1.16E-04 1.71E-04 2.27E-05 9.88E-04
exiv2_9.17 3.20E-05 3.32E-03 4.10E-03 4.99E-04 6.90E-05 3.61E-06 8.00E-05
gpac 5.58E-05 3.51E-04 5.15E-05 1.18E-04 1.43E-04 2.78E-05 3.21E-06
liblouis 1.10E-05 3.55E-04 3.01E-06 8.41E-04 6.52E-05 9.53E-05 1.10E-04
libming 7.70E-34 1.51E-05 9.00E-08 1.60E-07 2.50E-07 3.60E-05 7.70E-34
libtiff 7.72E-04 1.63E-03 2.94E-05 1.10E-03 4.02E-03 1.50E-04 1.86E-03
nasm 1.90E-03 1.70E-03 1.93E-03 1.12E-04 2.28E-05 4.31E-03 2.32E-03
ngiflib 2.13E-04 1.96E-04 1.96E-04 3.38E-05 2.21E-05 1.35E-04 1.83E-04
flvmeta 2.40E-07 0.00E+00 0.00E+00 2.40E-07 2.10E-07 2.50E-07 0.00E+00
tcpreplay 3.65E-03 2.68E-03 2.31E-03 4.74E-03 4.98E-04 - 4.21E-03
catdoc 1.32E-03 3.60E-07 2.41E-02 5.22E-05 2.75E-02 0.00E+00 4.00E-07
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Fig. 4: Test case generation process of CVE-2018-16335

taken as a metric for input prioritization.

D. RQ3: Coverage Metrics

Recall that we proposed three metrics for coverage ac-
counting: Function calls, loops, and basic blocks. In this
subsection, we evaluate the effectiveness of each metric,
and we compare our combination of the metrics with other
coverage-related metrics and input prioritization approach. We
ran the three metrics separately for 140 hours and repeated for
10 times, and we represent the result based on these separate
runs.

Internal investigation of the three metrics of coverage ac-
counting. In this experiment, we investigate the effectiveness
of each metric and their individual contribution to the overall
metrics. We ran the three metrics separately for 140 hours

TABLE VIII: Code coverage and vulnerabilities of the three
strategies of TortoiseFuzz.

Program Code coverage Vulnerabilities
Average Max

func bb loop func bb loop func bb loop
exiv2 17.39% 14.64% 17.56% 6.0 5.7 6.6 10 8 12
new_exiv2 18.66% 19.20% 19.71% 3.0 0.0 2.5 5 0 5
exiv2_9.17 16.75% 15.70% 14.80% 0.4 0.8 0.3 1 1 1
gpac 3.73% 3.77% 3.77% 4.6 4.2 4.3 6 7 9
liblouis 26.92% 25.64% 24.11% 1.0 0.5 0.7 1 1 2
libming 20.62% 20.72% 20.02% 3.0 3.0 3.0 3 3 3
libtiff 37.37% 38.79% 37.33% 0.0 0.8 0.3 0 2 1
nasm 29.07% 29.48% 28.80% 1.9 2.5 2.3 3 3 3
ngiflib 76.04% 76.04% 76.04% 3.9 3.6 3.8 5 5 5
flvmeta 12.10% 12.10% 12.10% 2.0 2.0 2.0 2 2 2
tcpreplay 17.24% 16.98% 17.56% 0.4 0.0 0.8 1 0 2
catdoc 48.07% 48.04% 47.98% 2.0 1.5 1.7 2 2 3

Fig. 5: The set of the bugs found by the 3 coverage accounting
metrics from real-world programs (in the best run).

and repeated for 10 times, and we represent the result based
on these separate runs. Table VIII shows the code coverage
and the number of discovered vulnerabilities of each coverage
accounting metric. In the table, func represents the function
call metric, loop represents the loop metric, and bb represents
the basic block metric. Running with the real-world programs,
the loop, func, and bb metrics found 28.2, 24.6, and 28.3
vulnerabilities on average, respectively. All metrics found a
non-negligible number of vulnerabilities exclusively, as shown
in Figure 5. This implies that the three metrics complement
each other and are all necessary for coverage accounting.
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TABLE IX: The number of found vulnerabilities associated
with the metrics of coverage accounting and AFL-Sensitive.

Program
Vulnerabilities

TortoiseFuzz AFL-Sensitive
func bb loop ALL bc ct ma mw n2 n4 n8 ALL

objdump 0 1 0 1 0 0 0 0 1 1 0 1
readelf 0 0 0 0 0 0 0 0 0 0 0 0
strings 0 0 0 0 0 0 0 0 0 0 0 0
nm 0 1 0 1 0 1 0 1 0 0 1 1
size 1 1 1 1 0 1 0 0 1 1 1 1
file 0 0 0 0 0 0 0 0 0 0 0 0
gzip 0 0 0 0 0 0 0 0 0 0 0 0
tiffset 0 1 1 1 0 0 0 0 0 0 0 0
tiff2pdf 1 0 0 1 0 0 0 0 0 0 0 0
gif2png 3 5 5 5 4 4 5 4 4 4 5 5
info2cap 7 5 10 10 9 7 5 5 10 7 7 10
jhead 0 0 0 0 0 0 0 0 0 0 0 0
SUM 12 14 17 20 13 13 10 10 16 13 14 18

TABLE X: The code coverage associated with the metrics of
coverage accounting and AFL-Sensitive. The highest values
are highlighted in blue.

Program
Code coverage(%)

TortoiseFuzz AFL-Sensitive
func bb loop bc ct ma mw n2 n4 n8

objdump 6.30 9.00 8.50 7.80 5.60 6.00 5.70 7.80 7.90 6.90
readelf 21.50 35.60 37.40 34.70 33.10 25.70 28.90 33.00 33.30 35.00
strings 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
nm 4.60 12.20 11.20 10.80 9.50 5.40 5.20 6.30 10.50 9.90
size 5.70 5.70 5.60 6.30 5.40 4.70 4.50 6.10 6.20 5.50
file 34.20 34.50 34.30 22.20 22.90 23.30 23.40 22.80 24.60 22.90
gzip 38.60 37.70 37.70 38.20 38.60 38.90 36.20 38.60 38.60 38.70
tiffset 30.10 30.40 30.50 10.00 10.00 10.50 10.00 10.00 10.00 10.00
tiff2pdf 40.70 40.50 38.70 31.30 33.40 33.10 29.40 30.80 33.40 31.60
gif2png 73.60 73.20 73.20 72.80 72.80 69.10 64.40 72.70 73.40 73.40
info2cap 41.20 40.90 42.10 40.70 41.00 34.30 35.60 41.30 40.70 39.20
jhead 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00 21.00

The comparison to other coverage metrics. In this ex-
periment, we compare our proposed metrics with two other
coverage metrics for input prioritization: AFL-Sensitive [53]
and LEOPARD [15].

AFL-Sensitive [53] presents 7 coverage metrics such as
memory access address (memory-access-aware branch cover-
age) and n-basic block execution path (n-gram branch cov-
erage). We ran our metrics and the 7 coverage metrics of
AFL-Sensitive on the same testing suite and equal amount of
time reported in the paper [53], and we compared them with
regard to the number of discovered vulnerabilities and code
coverage.

Table IX and Table X show the number of discovered
vulnerabilities and the code coverage associated with the
metrics of coverage accounting and AFL-Sensitive. Per AFL-
Sensitive [53], a metric should be included if it achieves the
top of all metrics in the associated found vulnerabilities or
code coverage on a target program. Based on our experiment,
we see that all metrics are necessary for coverage accounting
and AFL-Sensitive. Taking all metrics into account, we ob-
served that coverage accounting reported a few more vulnera-
bilities than AFL-Sensitive. Coverage accounting also slightly
outperformed in code coverage, given that it achieved a higher
coverage in 66.7% (8/12) and a lower coverage in 16.7%
(2/12) of the target programs. The results indicate coverage

TABLE XI: The Number of vulnerabilities found by LEOP-
ARD and TortoiseFuzz (10 runs).

Program TortoiseFuzz LEOPARD
Average Max Average Max

exiv2 9.7 12 6.0 11
new_exiv2 5.0 5 0.0 0
exiv2_9.17 1.0 1 0.7 1
gpac 7.6 9 5.8 8
liblouis 1.2 2 0.0 0
libming 3.0 3 3.0 3
libtiff 1.2 2 0.0 0
nasm 3.0 4 1.9 3
ngiflib 4.7 5 3.7 5
flvmeta 2.0 2 2.0 2
tcpreplay 1.2 2 0.0 0
catdoc 2.1 3 2.0 2
SUM 41.7 50 25.1 35
p-value of the Mann-Whitney U test 0.0001707

account performed slightly better than AFL-Sensitive in the
number of discovered vulnerabilities and code coverage with
fewer metrics, and that the metrics of coverage accounting are
more effective than those of AFL-Sensitive.

LEOPARD [15] proposed a function-level coverage ac-
counting scheme for input prioritization. Given a target pro-
gram, it first identifies potentially vulnerable functions in the
program, and then it calculates a score for the identified
functions. The score of a function is defined based on code
complexity properties, such as loop structures and data de-
pendency. Finally, LEOPARD prioritized inputs by the sum
of the score of the potentially vulnerable functions executed
by the target program with each input. On the contrary
of TortoiseFuzz which prioritize inputs by basic block-level
metrics, LEOPARD assesses the priority of inputs based on the
level of functions and in particular, pre-identified potentially
vulnerable functions.

Since LEOPARD integrates metrics such as code complex-
ity and vulnerable functions internally, we compare the result
of TortoiseFuzz as the integration of code coverage to that
of the corresponding LEOPARD fuzzer. As the LEOPARD
fuzzer or metric implementation is not open-sourced, we
contacted the authors and received from them the identified
potentially vulnerable functions with computed scores. We
then wrote a fuzzer, per their suggestion of the design,
deployed the computed scores to the fuzzer, and ran the
fuzzer with the LEOPARD metrics. We kept the total amount
of time 140 hours for each experiment, and compared the
number of discovered vulnerabilities between code coverage
and LEOPARD metrics, shown in Table XI.

We observe that TortoiseFuzz found more vulnerabilities
than LEOPARD from 83% (10/12) applications on average
and an equal number of vulnerabilities from the other 2
applications. The p-value is 0.0001707, which demonstrates
statistical significance between TortoiseFuzz and LEOPARD
and thus the coverage accounting metrics, which is on basic
block level, perform better than the LEOPARD metrics, which
is on function level, in identifying vulnerabilities from real-
world applications.
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TABLE XII: The number of vulnerabilities detected by QSYM
with and without coverage accounting (5 runs).

Program
Vulnerabilities

QSYM(+AFL) QSYM+func QSYM+bb QSYM+loop QSYM+CA
AVG Max AVG Max AVG Max AVG Max AVG Max

exiv2 8.2 10 11.2 12 8.4 11 10.6 13 13.0 15
new_exiv2 7.4 9 5.5 8 3.8 8 5.0 8 7.3 9
exiv2_9.17 2.0 2 1.5 2 1.5 2 1.8 3 1.8 3
gpac 6.0 8 7.0 10 8.4 10 7.6 9 9.2 11
liblouis 2.0 3 2.6 3 2.8 3 2.4 3 3.0 3
libming 3.0 3 3.0 3 3.0 3 3.0 3 3.0 3
libtiff 0.8 1 0.4 1 0.6 1 0.8 1 0.8 1
nasm 2.2 3 2.6 3 2.8 3 2.8 4 3.2 4
ngiflib 4.2 5 5.0 5 5.0 5 4.8 5 5.0 5
flvmeta 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2
tcpreplay 0.0 0 0.0 0 0.4 1 0.6 1 0.6 1
catdoc 2.0 2 2.0 2 2.0 2 2.0 2 2.0 2
SUM 39.8 48 43.6 51 41.4 51 44.0 54 51.2 59
p-value of the U test 0.2477059 0.5245183 0.1387917 0.0119252

E. RQ4. Improving the State-of-the-art with Coverage Ac-
counting.

As an input prioritization mechanism, coverage accounting
is able to cooperate with other types of fuzzing improvement
such as input generation. In this experiment, we study the
question that whether coverage accounting, as an extension
to the state-of-art fuzzer, helps improve the effectiveness in
vulnerability discovery.

Recall that QSYM was best-performed compared fuzzers
in our experiment, and that it found 9 vulnerabilities that are
missed by TortoiseFuzz. Therefore, we selected QSYM and
compared the number of vulnerabilities found by QSYM with
and without coverage metrics.

In this experiment, we compared QSYM to the other four
variations: QSYM with the function metric (QSYM+func),
the basic block metric (QSYM+bb), the loop metric
(QSYM+loop), and with the full coverage accounting metrics
(QSYM+CA). We ran all tools for 140 hours and repeated
each experiment for 5 times.

Table XII shows the number of vulnerabilities discovered
by each fuzzer. We find that all the metrics help to improve
QSYM in vulnerability discovery. In particular, QSYM with
full coverage accounting (QSYM+CA) is able to find 28.6%
more vulnerabilities on average, and 22.9% more in the
sum of the best per-program performance. This indicates that
coverage accounting is able to cooperate with the state-of-
the-art fuzzers and significantly improve the effectiveness in
vulnerability discovery.

F. RQ5: Defending against Anti-fuzzing

Recent work [23, 28] show that current fuzzing schemes
are vulnerable to anti-fuzzing techniques. Fuzzification [28],
for example, proposes three methods to hinder greybox fuzzers
and hybrid fuzzers. Fuzzification effectively reduced the num-
ber of discovered paths by 70.3% for AFL and QSYM on
real-world programs.

To test the robustness of coverage accounting against
Fuzzification, we implemented TortoiseFuzz-Bin, a version of
TortoiseFuzz to test binary programs based on AFL Qemu
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Fig. 6: Paths discovered by TortoiseFuzz from real-world
programs. Each program is compiled with eight settings: func,
bb, loop, afl (without protection), func-, bb-, loop-, afl-(with
all protections of Fuzzification).

mode and IDA Pro. We got 4 testing binaries from Fuzzifi-
cation compiled with all three anti-fuzzing methods. In our
experiment, we ran TortoiseFuzz-Bin for 72 hours aligned
with the setup of Fuzzification. We selected the initial seeds
based on the suggestion of the author of Fuzzification. We
also used Fuzzification’s method to get the numbers of the
path discovered. Additionally, we measured the code coverage
of TortoiseFuzz-Bin and AFL.

Table XIII and Table show the number of discovered
paths and the code coverage of each testing cases after 72
hours of fuzzing process. Based on the tables, we find that
AFL decreased much more than all the metrics in coverage
accounting. Additionally, we did the statistics of number of
discovered paths over time, shown in Figure 6. The figure
indicates that the coverage accounting metrics consistently
performed better than AFL since 4 hours after the experiment
starts, which indicates that coverage accounting is more robust
than AFL over time.

VII. DISCUSSION

A. Coverage Accounting Metrics

TortoiseFuzz prioritizes inputs by a combination of cover-
age and security impact. The security impact is represented by
the memory operations on three different types of granularity
at function, loop, and instruction level. These are empirical
heuristics inspired by Jia et al. [27]. We see our work as a first
step to investigate how to comprehensively account coverage
quantitatively and adopt the quantification to coverage-guided
fuzzing. In the future, we plan to study the quantification in
a more systematic way. A possible direction is to consider
more heuristics and apply machine learning to recognize the
feasible features for effective fuzzing.
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TABLE XIII: The number of discovered paths of the Anti-fuzz experiment. Each program is compiled with eight settings: func,
bb, loop, afl (without Fuzzification protection), func-, bb-, loop-, afl- (with full Fuzzifucation protection). The blue values denote
the highest decrease rate.

Program
#Paths discovered

TortoiseFuzz-Bin AFL-Qemu
func func- bb bb- loop loop- afl afl-

nm 4626 3120 (-32.5%) 5449 4040 (-25.8%) 5490 3888 (-29.1%) 5043 2884 (-42.8%)
objcopy 9518 7942 (-16.5%) 9823 7837 (-20.2%) 9869 7417 (-24.8%) 10165 6005 (-40.9%)
objdump 11353 10951 (-3.5%) 10618 10508 (-1.0%) 11272 10448 (-7.3%) 11569 10688 (-7.6%)
readelf 8761 6737 (-23.1%) 8673 6378 (-26.4%) 9075 6560 (-27.7%) 9863 5006 (-49.2%)

TABLE XIV: The code coverage result of the Anti-fuzz experiment. Each program is compiled with eight settings: func, bb,
loop, afl (without Fuzzification protection), func-, bb-, loop-, afl- (with full Fuzzification protection). The numbers in parentheses
are the decrease rates cased by Fuzzification. The blue values denote the highest decrease rate.

Program
Code coverage

TortoiseFuzz-Bin AFL-Qemu
func func- bb bb- loop loop- afl afl-

nm 5.2% 4.0% (-1.2%) 5.2% 4.8% (-0.4%) 5.3% 4.5% (-0.8%) 5.3% 3.9% (-1.4%)
objcopy 8.2% 7.5% (-0.7%) 8.3% 7.4% (-0.9%) 8.5% 7.0% (-1.5%) 8.8% 6.2% (-2.6%)
objdump 7.5% 7.3% (-0.2%) 7.3% 7.3% (-0.0%) 7.5% 7.5% (-0.0%) 7.8% 7.4% (-0.4%)
readelf 18.9% 15.8% (-3.1%) 18.4% 15.7% (-2.7%) 18.7% 15.50% (-3.2%) 20.5% 12.6% (-7.9%)

B. The Threshold for Security-sensitivity

We currently set a unified threshold for deciding security-
sensitive edges: an edge is security-sensitive if one of the
three metrics’ value is above 0. Ideally, the threshold should
be specific to programs. Future work would be to design
approaches to automatically generate the threshold for each
program through static analysis or during the fuzzing execu-
tion.

C. LAVA-M vs. Real-world Data Set

In our experiment, we observed that the LAVA-M test
suite is different from the real-world program test suite in two
aspects. First, LAVA-M has more test cases involving magic
words, which makes the test suite biased in testing exploit
generation tools. Second, the base binaries for LAVA-M are
not as complex as the real-world programs we tested. We
acknowledge the value of the data set; yet a future direction
is to systematically compare the inserted bugs in LAVA-M
against a large number of real-world programs, understand the
difference and the limitation of the current test suite, and build
a test suite that is more comprehensive and more representative
to real-world situations.

D. Statistical Significance of #Vulnerabilities per Program

In our evaluation, we did not report the statistical sig-
nificance between TortoiseFuzz and other fuzzers in terms
of the number of vulnerabilities found per program. On the
contrary to the per-program p-value in code coverage shown in
Table VI and represented in REDQUEEN [4], vulnerabilities
are very sparse in one vulnerabilities. Therefore, it is hard
to tell the effectiveness difference among fuzzers from a
single program. For example, for the flvmeta program, the
statistical significance among all tools are inconclusive, since
all tools found 2 vulnerabilities across all runs. Therefore, we
report the p-value of the total number of vulnerabilities found

from all target programs. This also indicates the necessity of
having a comprehensive data suite with a sufficient number
of vulnerabilities.

VIII. RELATED WORK

Plenty of techniques have been presented to improve
fuzzing in different aspects since the concept of fuzzing was
developed in 1990s [38]. In this section, we introduce some of
the presented fuzzing techniques. For a more comprehensive
study on fuzzing techniques, please refer to recent surveys
such as Chen et al. [10], Li et al. [32], and Manès et al [37].

Fuzzing specific program types. Some fuzzing techniques
focus on specific types of programs, based on which they
propose more effective fuzzing techniques. These studies
include fuzzing on protocol [5, 14], firmware [11, 17, 39],
and OS kernel [13, 45, 51, 57].

Hardware-assisted fuzzing. Previous work proposes various
approaches to increase the efficiency of the fuzzing process.
Xu et al. [56] designs three new operating primitives to remove
execution redundancy and improve the performance of AFL
in running testing inputs. Hardware-based fuzzing, such as
kAFL [45] and PTfuzz [61], leverages hardware features such
as Intel Processor Trace [25] to guide fuzzing without the
overhead caused by instrumentation. These techniques de-
creases the time spent on program execution and information
extraction, so that fuzzers can explore more inputs within a
given amount of time.

Generational fuzzing. Besides mutation fuzzing, generational
fuzzers also play an important role to test programs and find
security vulnerabilities. Fuzzers such as Peach [16], Sulley [3],
and SPIKE [2], generate samples based on a pre-defined
configuration which specifies the input format. As generational
fuzzers requires a format configuration which typically is
generated manually, these fuzzers are less generic and depend
on human efforts.

14



Machine learning-assisted fuzzing. Recent works, such as
Skyfire [52], Learn&fuzz [22], and NEUZZ [48], combines
fuzzing with machine learning and artificial intelligence. They
learn the input formats or the relationships between input and
program execution, and use the learned result to guide the
generation of testing inputs. Such fuzzers, though, usually
cause high overhead, because of the involvement of machine
learning processing.

Static analysis and its assistance on fuzzing. Dowser [24]
performs static analysis at compile time to find vulnerable
code like loops and pointers, so as QTEP [54]. Sparks et
al. [49] extracts the control flow graphs from the target to
help input generation. Steelix [33] and VUzzer [43] analyze
magic values, immediate values, and strings that can affect
control flow.

Dynamic analysis and its assistance on fuzzing. Dynamic
analysis including symbolic execution and taint analysis help
enhance fuzzing. Taint analysis is capable of showing the rela-
tionship between input and program execution. BuzzFuzz [19],
TaintScope [55], and VUzzer [43] use this technique to find
relevant bytes and reduce the mutation space. Symbolic exe-
cution helps exploring program states. KLEE [8], SAGE [21],
MoWF [42], and Driller [50] use this technique to execute
into deeper logic. To solve the problems such as path explo-
sion and constraint complexity, SYMFUZZ [9] reduces the
symbolized input bytes by taint analysis, while Angora [12]
performs a search inspired by gradient descent algorithm
during constraint solving. Another problem is that program
analysis will cause extra overhead. REDQUEEN [4] leverages
a lightweighted taint tracking and symbolic execution method
for optimization.

IX. CONCLUSION

In this paper, we propose TortoiseFuzz, an advanced
coverage-guided fuzzer with a novel technique called coverage
accounting for input prioritization. Based on the insight that
the security impact on memory corruption vulnerabilities can
be represented with memory operations, and that memory op-
erations can be abstracted at different levels, we evaluate edges
based on three levels, function call, loop, and basic block. We
combine the evaluation with coverage information for input
prioritization. In our experiments, we tested TortoiseFuzz with
6 greybox and hybrid fuzzers on 30 real-world programs,
and the results showed that TortoiseFuzz outperformed all but
one hybrid fuzzers, yet spent only 2% of memory resources.
Our experiments also showed that coverage accounting was
able to defend against current anti-fuzzing techniques. In
addition, TortoiseFuzz identified 20 zero-day vulnerabilities,
15 of which have been confirmed and released with CVE IDs.
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