
Take a Step Further: Understanding
Page Spray in Linux Kernel

Exploitation
Ziyi Guo, Dang K Le, Zhenpeng Lin, Kyle Zeng,

Ruoyu Wang, Tiffany Bao, Yan Shoshitaishvili, Adam Doupé, and Xinyu Xing

Vulns in Linux Kernel

● Out-of-bounds
○ Access memory address based on object, but the address is actually out of the boundary of

the current object.

● Use-after-free
○ Access the object after it has been freed/discarded.

● Double-free
○ Free the object twice, confuse the system.

● Invalid-free
○ Free an address which is not the correct address of an object.

Linux Kernel Memory Management

● Heap Allocator
○ Used for Objects-Based Management.

○ Multiple different cache size: kmalloc-256/kmalloc-1024 ….

○ Built on the top of Slab Pages!

● Page Allocator
○ Used for Pages Management

○ Buddy System

○ Fundamental mechanism for the system memory management!

Exploits in Linux Kernel

● DirtyCred(ACM CCS’22, Blackhat USA’22)

○ Use an object temporal vulnerability as starting point.

○ Maintain a reference to the writable object spot.(allocation first)

○ Free the writable objects.

○ Reclaim the freed slot with privileged objects

○ Now you can a reference to privileged object!!!

Exploits in Linux Kernel

● Cross Cache Attack

Free Pages Reclaim

Is that possible we

do not reclaim the

pages by heap

allocator or slab

allocator?

Flash back....

Understanding the Root Cause

● Allocation + Copy Write

raw page-level buffer

Non-linear Page-Frags Buffer

Understanding the Root Cause

● mmap() & zero copy

Model of Page Spray

Callsite Examples

● packet_snd

● packet_mmap

● tcp_send_rcvq

● pipe_write

● io_uring_mmap

● aead_sendmsg

● skcipher_sendmsg

● mptcp_sendmsg

● rds_message_copy_from_user

● ……

Exploitability

Mobile Device CVE:

CVE-2022-20409

Cross Cache Included CVE:

CVE-2022-20409

Refurbish Intractable Exploit:

CVE-2022-2585 in Case Study Section

Stability

Two system workloads:

IDLE and BUSY

Different Vulnerability Types:

OOB/UAF/DF…

https://github.com/haruki3hhh/PageSp

ray/tree/main/stability_exploitability

https://github.com/haruki3hhh/PageSpray/tree/main/stability_exploitability
https://github.com/haruki3hhh/PageSpray/tree/main/stability_exploitability

Mitigation Discussion

Page-level Memory Reuse is dangerous!

- A straightforward idea to mitigate:

- isolate the pages to another memory area, by GFP_<FLAG>

- Even page-spray can be triggered, overlap between critical objects and data won’t

happen.

- An external mitigation:
- SLAB_VIRTUAL

- https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-15-

matteorizzo@google.com/#25513020

- Prevent slab virtual address reuse!

https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-15-matteorizzo@google.com/
https://patchwork.kernel.org/project/linux-mm/patch/20230915105933.495735-15-matteorizzo@google.com/

Realworld

• Some Realworld Exploits, our team use Page Spray

• CVE-2022-20409 in Google Pixel 6 and Samsung S22
• Blackhat USA 2023, “Bad io_uring”

• CVE-2022-2585 in Google kCTF, TyphoonPWN

Conclusion

● Page Spray provides comparable even superior exploitability and stability in

real-world scenarios.

● Root cause of Page Spray is associated with some mechanisms in the Linux

Kernel’s design.

● Rethink the reuse of pages! Design and introduce more powerful mitigation

into kernel to mitigate page spray attack.

	Slide 1: Take a Step Further: Understanding Page Spray in Linux Kernel Exploitation
	Slide 2: Vulns in Linux Kernel
	Slide 3: Linux Kernel Memory Management
	Slide 4: Exploits in Linux Kernel
	Slide 5: Exploits in Linux Kernel
	Slide 6: Free Pages Reclaim
	Slide 7: Flash back....
	Slide 8: Understanding the Root Cause
	Slide 9: Understanding the Root Cause
	Slide 10: Model of Page Spray
	Slide 11: Callsite Examples
	Slide 12: Exploitability
	Slide 13: Stability
	Slide 14: Mitigation Discussion
	Slide 15: Realworld
	Slide 16: Conclusion

