Playing for K(H)eaps:

Understanding and Improving Linux Kernel Exploit Reliability

Kyle Zeng"', Yueqi Chen*?3, Haehyun Cho'#,
Xinyu Xing%®, Adam Doupé’, Yan Shosbhitaishvili!, Tiffany Bao'

Arizona State University
2Pennsylvania State University
SUniversity of Colorado Boulder

“Soongsil University

*Northwestern University

%® ‘s ll @ PennState
Soongsil University

*First two authors contributed equally to this work

£ =% Northwestern
27 University

Linux Kernel Heap Exploit

free slot

free slot

object

free slot

free slot

Linux kernel exploits are dangerous

Linux kernel exploits are known to be unreliable

Exploit stabilization heavily relies on personal expertise

Systematically ctudy why (inux kernel
heap-based exploits are unrefliable

Research Questions

- What are the commonly used exploit stabilization techniques?
How effective are existing techniques?
- Why do existing techniques work?

|s there any way to further improve exploit reliability?

Our Approach

Qualitative Techniques Quantitative Results L
: —> Investigation
Interview Experiment
AXO\MGC]QG
Modeling]

/I\/Iodel

NeW Combination
Technigue

Technique Collection

£ @i

11 Linux kernel security experts

*obtained exemption from IRB

Defragmentation

Heap Grooming
Single-Thread Heap Spray
Multi-Process Heap Spray
CPU Pinning

Quantitative Experiment

Real-world exploits: 17 public exploits for distinct CVES
Baseline exploits: strip away existing techniques

Exploit variants: apply one single technique to baseline

85 samples in total

Quantitative Experiment Result

Baseline Defragment Heap Single-Thread Multi-Process CPU
Grooming Spray Spray Pinning
Success 38.61% 31.88% 74.40% 61.83% 82.55% 51.51%

Evaluation result of all technigues

Quantitative Experiment Result - Cont.

Baseline

Defragmentation

Success

13.05%

42.64%

Baseline

Defragmentation

Evaluation Result for OOB Exploits

Success

49.26%

27.40%

Evaluation Result for non-O0OB Exploits

10

Kernel Heap Exploit Model

Vulnerability . . .
Context Setup Effect Delay Allocator Bracing Final Preparation
A A A A
4 Y Y Y A\
Start Vulnerability Allocator Allocator Payload
Triggered Corrupted Braced Triggered

I : : ; >

11

Critical Phases

Slot-Critical Phase

vuln obj vuln obj
>
target victim
vuln obj
) |
other obj
OOB Exploits

Allocator-Critical Phase

o~
o~

DF Exploits

12

Unreliability Factors

Unknown Heap Layout
Unexpected Heap Usage
Unwanted Task Migration

Unpredictable Corruption Timing

13

Kernel Heap Exploit Model

Vulnerability

Context Setup Effect Delay Allocator Bracing Final Preparation
A A A A
4 Y Y Y A\
Start Vulnerability Allocator Allocator Payload

Triggered Corrupted Braced Triggered

: : i i >
Dangling Pointer Object Release i
Created Take Effect |

UAF/DF Exploits | ' EEssa———— >

Slot-Critical & Allocator-Critical

Heap Layout Object !
. . Preparation Overflowed |

O0B-Object Exploits | s —— ' >
Heap Layout Slot-Critical Freelist i
Preparation Overwritten !

O0B-Freelist Exploits — >

Slot-Critical Allocator-Critical

14

Context Conservation

Critical
Phase

alloc vuln obj
l context switch
O AL)
° (......................
l reschedule

alloc victim
do overflow
OOB Exploits

Other

Processes

15

Context Conservation - Cont.

Use Time Stamp Counter (TSC) as the context-switch indicator

tscl =
tsc2 =
diff =

If diff is huge, then it is a fresh time slice

rdtsc()
rdtsc()
tsc2 - tscl

Baseline Context Conservation
Idle 62.48% 64.07%
Busy 36.75% 49 84%

16

Combo Technique

Unknown Heap Layout Defragmentation
Unexpected Heap Usage Context Conservation
Unwanted Task Migration Multi-Process Heap Spray
Unpredictable Corruption Timing CPU Pinning

What if we combine them?

17

Combo Technique - Cont.

Exploit Variant: baseline + applicable techniques

Baseline

Real-world

Combo

Success

36.51%

66.99%

91.15%

Evaluation Result

18

Conclusion

Systematically studied the kernel heap exploit reliability problem
Proposed a model to explain the problem and guide future research
Discovered a new technique that improve exploit reliability by 14.87%

Designed a technique combination that improves exploit reliability by

135.53%

19

Playing for K(H)eaps:

Understanding and Improving Linux Kernel Exploit Reliability

Thank you!
Q&A

https://aithub.com/sefcom/KHeaps Kyle Zeng

ARTIFACT ARTIFACT ARTIFACT zengyhkyle@asu.edu
EVALUATED EVALUATED EVALUATED
yusenix susenix yusenix
Elan, G isn. G, © @kyrebot
AVAILABLE REPRODUCED) @Kyle-Kyle

Q
-
==
c

o

https://github.com/sefcom/KHeaps

