Playing for K(H)eaps:

Understanding and Improving Linux Kernel Exploit Reliability

Kyle Zeng"', Yueqi Chen*?3, Haehyun Cho'#,
Xinyu Xing%®, Adam Doupé’, Yan Shosbhitaishvili!, Tiffany Bao'

Arizona State University
2Pennsylvania State University
SUniversity of Colorado Boulder

“Soongsil University

*Northwestern University

%® ‘s ll @ PennState
Soongsil University

*First two authors contributed equally to this work

£ =% Northwestern
27 University



Linux Kernel Heap Exploit
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Linux kernel exploits are dangerous

Linux kernel exploits are known to be unreliable

Exploit stabilization heavily relies on personal expertise



Systematically ctudy why (inux kernel
heap-based exploits are unrefliable



Research Questions

- What are the commonly used exploit stabilization techniques?
How effective are existing techniques?
- Why do existing techniques work?

|s there any way to further improve exploit reliability?



Our Approach
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Technique Collection

£ @i

11 Linux kernel security experts
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Defragmentation

Heap Grooming
Single-Thread Heap Spray
Multi-Process Heap Spray
CPU Pinning



Quantitative Experiment

Real-world exploits: 17 public exploits for distinct CVES
Baseline exploits: strip away existing techniques

Exploit variants: apply one single technique to baseline

85 samples in total



Quantitative Experiment Result

Baseline Defragment Heap Single-Thread Multi-Process CPU
Grooming Spray Spray Pinning
Success 38.61% 31.88% 74.40% 61.83% 82.55% 51.51%

Evaluation result of all technigues



Quantitative Experiment Result - Cont.

Baseline

Defragmentation

Success
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42.64%

Baseline

Defragmentation

Evaluation Result for OOB Exploits

Success

49.26%

27.40%

Evaluation Result for non-O0OB Exploits
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Kernel Heap Exploit Model

Vulnerability . . .
Context Setup Effect Delay Allocator Bracing Final Preparation
A A A A
4 Y Y Y A\
Start Vulnerability Allocator Allocator Payload
Triggered Corrupted Braced Triggered

I : : ; >

11



Critical Phases
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Unreliability Factors

Unknown Heap Layout
Unexpected Heap Usage
Unwanted Task Migration

Unpredictable Corruption Timing
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Kernel Heap Exploit Model
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Context Conservation
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Context Conservation - Cont.

Use Time Stamp Counter (TSC) as the context-switch indicator

tscl =
tsc2 =
diff =

If diff is huge, then it is a fresh time slice

rdtsc()
rdtsc()
tsc2 - tscl

Baseline Context Conservation
Idle 62.48% 64.07%
Busy 36.75% 49 84%
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Combo Technique

Unknown Heap Layout Defragmentation
Unexpected Heap Usage Context Conservation
Unwanted Task Migration Multi-Process Heap Spray
Unpredictable Corruption Timing CPU Pinning

What if we combine them?
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Combo Technique - Cont.

Exploit Variant: baseline + applicable techniques

Baseline

Real-world

Combo

Success

36.51%

66.99%

91.15%

Evaluation Result
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Conclusion

Systematically studied the kernel heap exploit reliability problem
Proposed a model to explain the problem and guide future research
Discovered a new technique that improve exploit reliability by 14.87%

Designed a technique combination that improves exploit reliability by

135.53%
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Understanding and Improving Linux Kernel Exploit Reliability
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