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Third-Party Mobile Payment Service
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« The user can pay the Merchant App through the Cashier.
« The messages in italic are secured cryptographically.




Payment Credentials: Payment Key

Cashier Payment Assigned by Shared Cashier’s
Credential the Cashier? Public Key

« The Cashiers define payment keys for the HMAC or digital
signature.

e The setting of these credentials differs among the Cashier;@@
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Payment Credentials: Other Credentials
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« Android Signing Key (in Cashier? & Cashier4)
« SSL Client Certificate (in Cashier?)
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eaking Sources of Payment
Credentials

e Public Git Repositories

(1) GitHub (2) GitLab
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e Mobile Apps (e.g., Android APKs




eaking Sources of Payment

Credentials

e Merchant Servers

o Caused by (1) flawed backend SDKs (2) lack of access control on credential files

o The attacker can infer the endpoint of the credential file according to backURL, e.C

https://sample.com/pay/backURL.php => https://sample.com/pay/secret/privateKey .
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Exploiting Leaked Payment Credentials

e Merchant Impersonation Exploit:

o (1) Downloading Transaction Record (2) Refund (3) Money Transfer
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« Android Package Signature Forgery:

o Overall, 400+ valid Android signing keys have been detected.
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Exploiting Leaked Payment Credentials

e Backward SSO Attack:

o Two Cashiers offer SSO service but fail to isolate their services, e.qg., shared user_ids.

o The attacker may hijack the victim’s Merchant account with Profile Exploit [1].

Reusage of payment keys as the SSO credentials

o
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[1] R. Yang, W. C. Lau and S. Shi, “Breaking and Fixing Mobile App Authentication with OAuth2.0-based Protocols” in ACNS, 2017
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Exploiting Leaked Payment Credentials

o Cross-App Payment Notification Forgery:

o When using the digital signature, the public key of the Cashier tends to be shared.

o Some Merchant Server overlooks the app identifier in the payment notifications.

o The attacker may forge payment naotifications to cheat another Merchant App.
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PayKeyMiner
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« We develop an automated tool to enable large-scale mining for the
payment credentials leaked in the wild.
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Empirical Testing Result

Cashier Cashier1 Cashier? Cashier3 Cashier4

o PayKeyMiner has detected roughly 20,000 unique payment
credentials leaked from different sources.
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Empirical Testing Result

e Public Git Repositories:
o [.8% of the credentials are from old git commits.

o Over 700 payment credentials are related to iOS apps.

o Most public GitLab repositories are owned by some outsourcing companies.

e« Android APKSs:

o Qverall, 4,961 unique payment credentials have been detected.

o 31.9% of these credentials are from the old app versions only.

« Merchant Servers:

o We use HTTP HEAD to probe these exposed credential files without downloading them.

o 7.1% percent of the tested servers fail to protect their credentials.

17



Longitudinal Study

Cashier Cashier1 Cashier2

#Updating the Leaked Key 055 (35.5%) 337 (9.2%) 443 (12.1%)

#Deleting Git Commits 117 (16.3%) 218 (6.0%) 198 (5.4%)

« We regularly monitor these submitted keys to study the responses from the
Merchants.

« Around 60% of the leaking Merchants have not made any response. ﬁ
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Suggested Fixes

We give the following suggestions to mitigate the payment credential
leaks:

(1) The Cashiers should alarm their Merchants about the serious
conseguences of payment credential leaks.

(2) The Cashiers should review their services and timely fix the insecure
implementations, including the vulnerable backend SDKs and shared
user_i1as.

(3) The Cashiers should proactively detect and revoke the leaked credentials

(4) The Merchants had better periodically update their payment credentials.
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