An Empirical Study on Mobile Payment
Credential Leaks and Their Exploits

Shangcheng Shi, Xianbo Wang, Kyle Zeng,
Ronghai Yang and Wing Cheong Lau

The Chinese University of Hong Kong

Outline

 Introduction to Mobile Payment Service and
Credentials

» L eaking Sources of Payment Credentials

 Exploiting Leaked Payment Credentials

« Automated Mining for Payment Credentials

o Empirical Testing with PayKeyMiner

Third-Party Mobile Payment Service

1) ordering request

Merchant 2) payment order- Merchant | &~
app info + order info L:
7)/sync. notification Server |&O
/ (il
" e.g. { “retailer “r123.",! 5b)async.|| 8)extra
. BackURL": " notification| |interactions
i “https://merchant.com/ ! (e g refund)
' payment/backURL.php", ! B
e e \
Cashier 4) payment request Cashier =
App Ba) sync. nofification Server |&O

[

« The user can pay the Merchant App through the Cashier.
« The messages in italic are secured cryptographically.

Payment Credentials: Payment Key

Cashier Payment Assigned by Shared Cashier’s
Credential the Cashier? Public Key

« The Cashiers define payment keys for the HMAC or digital
signature.

e The setting of these credentials differs among the Cashier;@@

4

Payment Credentials: Other Credentials

1) ordering request

Merchant 2) payment order: Merchant | =
A app info + order info »"—Z
PP 7) sync. notification Server [
N Th
3) payment|| 6) sync. 5b) async. 8) extra
otification

notification| ||interactions
(e.g., refund)

N

N

4) payment request Cashier
5a) sync. nolification Server

Cashier
App

)

ojojo

[

e

« Android Signing Key (in Cashier? & Cashier4)
« SSL Client Certificate (in Cashier?)

Outline

o Introduction to Mobile Payment Service and
Credentials

» | eaking Sources of Payment Credentials

 Exploiting Leaked Payment Credentials

« Automated Mining for Payment Credentials

o Empirical Testing with PayKeyMiner

eaking Sources of Payment
Credentials

e Public Git Repositories

(1) GitHub (2) GitLab

O Search or jump to... j Pull requests

Issues Marketplace Explore

&% merchant/config/params.php X +

é

C A Not secure —/hong/shop/bIob/master/merchant/config/params.php

LV 4 GitLab Projects Groups

Snippets Help

<> Code Issues

Pull requests Actions Projects Wiki Security Insights S shop chen > shop > Repository
£ Project master shop / merchant / config / params.php
B omaster - SN, <onfig / Configjava /<> Jump to - o
® Repository ?
9" O it - thored 2 years ago
Files
Ax 1 contributor TR
0 Lo m (g
[params.php 1.33x8 'O

e Mobile Apps (e.g., Android APKs

eaking Sources of Payment

Credentials

e Merchant Servers

o Caused by (1) flawed backend SDKs (2) lack of access control on credential files

o The attacker can infer the endpoint of the credential file according to backURL, e.C

https://sample.com/pay/backURL.php => https://sample.com/pay/secret/privateKey .

1) ordering request

Merchant 2) payment order: Merchant | /=
app info + order info _,_:
App 7)/sync. notification Server |&O
N\ J ~ AN
3) payment| 6)sync. | ' eg.,{ “retailer “r123.",! 5b) async. 8) extra
order |notification] | BackURL": . notification| |interactions

\

Cashier
App

\ "https://sample.com/
' pay/backURL.php"”,

4) payment request

\

5a) sync. nofification

Cashier

Server

|(e.g., refund)

=D

php_sdk

—secret
|:privateKey.pem

cashierKey.pem

—configure.php

—backURL.php

Outline

o Introduction to Mobile Payment Service and
Credentials

» L eaking Sources of Payment Credentials

« Exploiting Leaked Payment Credentials

« Automated Mining for Payment Credentials

o Empirical Testing with PayKeyMiner

Exploiting Leaked Payment Credentials

e Merchant Impersonation Exploit:

o (1) Downloading Transaction Record (2) Refund (3) Money Transfer

1) ordering request

Merchant 2) pa_yment 0':der: Merchant %
A app info + order info S ’0_5
PP 7) sync. notification | Yerver |t
\ ~ \
3) payment| 6) sync. 5b) async. 8) extra
order |notification notification| |interactions
(e.g., refund)
) \
Cashier 4) payment request | Cashier =)
App 5a) sync. notification Server |5

« Android Package Signature Forgery:

o Overall, 400+ valid Android signing keys have been detected.

10

Exploiting Leaked Payment Credentials

e Backward SSO Attack:

o Two Cashiers offer SSO service but fail to isolate their services, e.qg., shared user_ids.

o The attacker may hijack the victim’s Merchant account with Profile Exploit [1].

Reusage of payment keys as the SSO credentials

o
Merchant 5) token + user_id | Merchant | .=
App 8) user identity Server |&D
3
o | Atoken | oo
.| + user_id ' &mail” " bob@x.coin
(for login) |, “user_i: “123” ..} i
Cashier .
A 2) user consent - Cashier s =
PP 3) token + user _id Server [&O

[1] R. Yang, W. C. Lau and S. Shi, “Breaking and Fixing Mobile App Authentication with OAuth2.0-based Protocols” in ACNS, 2017
11

Exploiting Leaked Payment Credentials

o Cross-App Payment Notification Forgery:

o When using the digital signature, the public key of the Cashier tends to be shared.

o Some Merchant Server overlooks the app identifier in the payment notifications.

o The attacker may forge payment naotifications to cheat another Merchant App.

' eg, { “retailer”: “rl", “trade_amount” g
' “px” grder_num” : “ox’bacKURL":

' “"https://merchant.com/...” ..}
Merchant App 1) ordering request * s Merchant | &=
+ 2) payment order =
Cashier App 7) sync. notification S Server O
FTTTToTTToo oo 1N
6. 1 e.g, { “retailer"r2", |
____________________________ Y SJ’I)C /E trade_amount” : ¥
| e.g., { “retailer"'r2", | - ”oflf}'ca 0 ' Px” , “order_num , %ync.
. trade_amount” :p%” , : /07 ' OX” ..} | . .
. 6rder_num” :o%” , “backURL [v~_ TN~ Z7Tmomomooooood lnotification
i "https://attacker.com” ...} |
______ 1 3) crafted payment request

= | Cashier [{4) signed payment notifications; Attacker | M
> Server | 5) refunding request Server | XA
12 i

Outline

o Introduction to Mobile Payment Service and
Credentials

» L eaking Sources of Payment Credentials

 Exploiting Leaked Payment Credentials

« Automated Mining for Payment Credentials

o Empirical Testing with PayKeyMiner

13

PayKeyMiner

Crawler Scanner | Detector
. : 4) . " ("
(’ ; : History : Machine-Learning
; 1 | Backtracing | |: | Classifier |
[GitHub Search] . cloned git | .~ | : candidate : . kreﬁlnfeld ;
API ; itories. : iles | [eysl/ files :
:rePOSItorles.El L Selc\:nraettcll’“artéern J EkeyS/ files Entropy Filter J Lol $[Online Validator}é
Search Engine | |[: | | confidential File File Processor leaked payment
Query : : Extraction ; : credentials
APK Crawler|:: o o backURLs URL | “
l & Screener J. : APK Enumerator E
Input1: (Cashier-Specific) APKs Input2: Structures of Output: Test Report
Querystrings/ Features (w/ payment SDKs) Backend SDKs

« We develop an automated tool to enable large-scale mining for the
payment credentials leaked in the wild.

14

Outline

o Introduction to Mobile Payment Service and
Credentials

» L eaking Sources of Payment Credentials

 Exploiting Leaked Payment Credentials

« Automated Mining for Payment Credentials

« Empirical Testing with PayKeyMiner

15

Empirical Testing Result

Cashier Cashier1 Cashier? Cashier3 Cashier4

o PayKeyMiner has detected roughly 20,000 unique payment
credentials leaked from different sources.

16 o,

Empirical Testing Result

e Public Git Repositories:
o [.8% of the credentials are from old git commits.

o Over 700 payment credentials are related to iOS apps.

o Most public GitLab repositories are owned by some outsourcing companies.

e« Android APKSs:

o Qverall, 4,961 unique payment credentials have been detected.

o 31.9% of these credentials are from the old app versions only.

« Merchant Servers:

o We use HTTP HEAD to probe these exposed credential files without downloading them.

o 7.1% percent of the tested servers fail to protect their credentials.

17

Longitudinal Study

Cashier Cashier1 Cashier2

#Updating the Leaked Key 055 (35.5%) 337 (9.2%) 443 (12.1%)

#Deleting Git Commits 117 (16.3%) 218 (6.0%) 198 (5.4%)

« We regularly monitor these submitted keys to study the responses from the
Merchants.

« Around 60% of the leaking Merchants have not made any response. ﬁ

18

Suggested Fixes

We give the following suggestions to mitigate the payment credential
leaks:

(1) The Cashiers should alarm their Merchants about the serious
conseguences of payment credential leaks.

(2) The Cashiers should review their services and timely fix the insecure
implementations, including the vulnerable backend SDKs and shared
user_i1as.

(3) The Cashiers should proactively detect and revoke the leaked credentials

(4) The Merchants had better periodically update their payment credentials.

19

Thanks!
Q&A

20

