
RetSpill: Igniting User-Controlled Data
to Burn Away Linux Kernel Protections

Kyle Zeng1, Zhenpeng Lin2, Kangjie Lu3, Xinyu Xing2,
Ruoyu Wang1, Adam Doupé1, Yan Shoshitaishvili1, Tiffany Bao1

1Arizona State University
2Northwestern University
3University of Minnesota

Linux Kernel Security

2
* According to Kernel Exploit Recipes Notebook by Aug 10th, 2022

Google launched kCTF program to collect Linux kernel exploits

The maximum reward for each submission is $130,000

15 out of 16 are heap-based control-flow hijacking exploits*

Linux Kernel Heap Exploit

3
* According to Kernel Exploit Recipes Notebook by Aug 10th, 2022

PC-CONTROL != ROOT

4

Physmap

Kernel Heap

Userspace

CPU Entry Area

Kernel Stack

Payload

Heap Object Disclosure + Register Control

Physmap Base Disclosure + Register Control

CEA Base Disclosure + Register Control

Systematically study the impact of
on-stack user data on kernel security

5

Data Spillage Source

6

• Preserved Registers

• Calling Convention

• Valid Data

• Uninitialized Memory

Primitive 1: Rewritable Payload

7

Primitive 2: Crash-Resilient ROP

8

RANDKSTACK

Break User/Kernel Boundary

• Rewritable Payload
• turn one PC-Control into many without reliability degradation

• Crash-Resilient ROP
• enhanced resiliency

9

RetSpill: Reliable unlimited arbitrary read/write/exec given one PC-Control

IGNI: Break User/Kernel Boundary Automatically

10

Kernel

PoC

Privilege
Escalation Exploit

IGNI’s high-level workflow

IGNI: Break User/Kernel Boundary Automatically

11
IGNI’s high-level workflow

IGNI: Break User/Kernel Boundary Automatically

12

Turn 20/22 PoC to exploits automatically

Valid Data Preserved
Registers

Calling
Convention

Uninitialized
Memory Total

Gadget 1.1 6.1 3.9 5.5 16.5

of on-stack userspace data

RetSpill vs Mitigations

13

Mitigation PC-Control
Achievable? RetSpill Works? Deployed?

SMEP/SMAP/KPTI

RANDKSTACK

STACKLEAK

FG-KASLR

KCFI/IBT

Shadow Stack

CFI+Shadow Stack

Case Study: FG-KASLR Bypass

FG-KASLR: Function-Granular KASLR

14

Function-Granular: ROP gadgets available

Main
Thread

ROP
Chain1

ROP
Chain2

new thread

new thread

Resolved Function Address

Final Payload

Authors of FG-KASLR updated its design after our report

Proposed Mitigation

Goal: Prevent deterministic access
to any spillage data sources

Overhead: 0.61%

15
per-stackframe randomization

Conclusion

16

• Discover the RetSpill exploitation technique

• Systematically study RetSpill and demonstrate its severity

• Demonstrate the ease of exploitation with IGNI

• Propose a defense against RetSpill

RetSpill: Igniting User-Controlled Data
to Burn Away Linux Kernel Protections

Thank you!
Q & A

zengyhkyle@asu.edu

@ky1ebot

@Kyle-Kyle

https://github.com/sefcom/RetSpill Kyle Zeng

https://github.com/sefcom/RetSpill

