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Linux Kernel Security
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* According to Kernel Exploit Recipes Notebook by Aug 10th, 2022

Google launched kCTF program to collect Linux kernel exploits

The maximum reward for each submission is $130,000

15 out of 16 are heap-based control-flow hijacking exploits*



Linux Kernel Heap Exploit
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* According to Kernel Exploit Recipes Notebook by Aug 10th, 2022



PC-CONTROL != ROOT
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Systematically study the impact of 
on-stack user data on kernel security
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Data Spillage Source
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• Preserved Registers

• Calling Convention

• Valid Data

• Uninitialized Memory



Primitive 1: Rewritable Payload
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Primitive 2: Crash-Resilient ROP
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RANDKSTACK



Break User/Kernel Boundary

• Rewritable Payload
• turn one PC-Control into many without reliability degradation

• Crash-Resilient ROP
• enhanced resiliency
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RetSpill: Reliable unlimited arbitrary read/write/exec given one PC-Control



IGNI: Break User/Kernel Boundary Automatically
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Kernel
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Privilege 
Escalation Exploit

IGNI’s high-level workflow



IGNI: Break User/Kernel Boundary Automatically
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IGNI’s high-level workflow



IGNI: Break User/Kernel Boundary Automatically
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Turn 20/22 PoC to exploits automatically

Valid Data Preserved 
Registers

Calling 
Convention

Uninitialized 
Memory Total

Gadget 1.1 6.1 3.9 5.5 16.5

# of on-stack userspace data



RetSpill vs Mitigations
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Mitigation PC-Control
Achievable? RetSpill Works? Deployed? 

SMEP/SMAP/KPTI

RANDKSTACK

STACKLEAK

FG-KASLR

KCFI/IBT

Shadow Stack

CFI+Shadow Stack



Case Study: FG-KASLR Bypass

FG-KASLR: Function-Granular KASLR
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Function-Granular: ROP gadgets available

Main 
Thread

ROP 
Chain1

ROP 
Chain2

new thread

new thread

Resolved Function Address

Final Payload

Authors of FG-KASLR updated its design after our report



Proposed Mitigation

Goal: Prevent deterministic access 
to any spillage data sources

Overhead: 0.61%
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per-stackframe randomization



Conclusion
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• Discover the RetSpill exploitation technique

• Systematically study RetSpill and demonstrate its severity

• Demonstrate the ease of exploitation with IGNI

• Propose a defense against RetSpill



RetSpill: Igniting User-Controlled Data
to Burn Away Linux Kernel Protections

Thank you!
Q & A

zengyhkyle@asu.edu

@ky1ebot

@Kyle-Kyle

https://github.com/sefcom/RetSpill Kyle Zeng

https://github.com/sefcom/RetSpill

